• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Evolution in real-time: How bacteria adapt to their hosts

Bioengineer by Bioengineer
August 18, 2020
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Some bacteria become increasingly infectious when they have to move from cell to cell in order to survive

IMAGE

Credit: © Patrick Arthofer

In the environment, they are often found inside unicellular organisms. A research team led by Matthias Horn at the Centre for Microbiology and Environmental Systems Science at the University of Vienna has made use of laboratory experiments to gain a better understanding of how these bacteria adapt to their host cell over time. This is due to changes in the genome and in gene expression. The study has been published in PNAS.

In the laboratory of the Center for Microbiology and Environmental Systems Science at the University of Vienna, so-called “Parachlamydia” was observed after a period of 14 months of evolution inside its unicellular host. Parachlamydia is a genus of environmental chlamydiae that is found in water or soil. In contrast to their human-pathogenic relatives, they are not infectious for humans. They live in unicellular organisms and are dependent on nutrients from their hosts. Therefore, over the course of time they have perfected mechanisms to invade host cells and reproduce inside them.

Theoretical predictions confirmed in the laboratory

Parachlamydia serves as a model system to study the adaptation of host-dependent bacteria in the laboratory. The evolutionary experiment carried out for this purpose involved over 500 generations of bacteria, which corresponds to a period of about 15,000 years in human time-frame.

To verify theoretical predictions on the development of infectivity, the bacteria were kept in the laboratory under two different experimental conditions. In one part of the experiment, the bacteria were dependent on frequent infection of new host cells in order to survive. In the other part, they were able to multiply permanently within one and the same host cell. “Our results reveal that if the bacteria are able to remain within one host cell and ensure that they continue to live in the daughter cells of the host when the host cell divides, their infectivity does not change. However, bacteria become increasingly infectious when they have to move from one host cell to another host cell in order to survive.” explains Paul Herrera, first author of the study.

Adaptation of the bacteria at the molecular level

The researchers went one step further in their experiments. They examined the genes of the bacteria at the beginning of the evolutionary process and compared them with the genes after 500 generations of evolution. They found that the genes of the two groups of bacteria differed significantly at 1,161 sites.

However, this genetic information alone was not sufficient to explain the differences in infectivity. Only the subsequent analysis of gene expression – i.e. the use of the almost 2,500 genes during infection – revealed that the infectious bacteria, which have to switch between host cells, showed changes in the expression of genes crucial for the infection mechanism and for certain metabolic pathways that are important for survival outside the host cells.

“The transmission pathway plays a crucial role in the development of infectivity in host-dependent bacteria. The observed increase in infectivity is based on a variety of genetic differences and major changes in gene expression. These modifications result in the host cells becoming more easily infected and give the bacteria a better chance to survive outside the host cell,” summarises Matthias Horn.

###

Publication in PNAS:

Molecular causes of an evolutionary shift along the parasitism-mutualism continuum in a bacterial symbiont

Paul Herrera, Lisa Schuster, Cecilia Wentrup, Lena König, Thomas Kempinger, Hyunsoo Na, Jasmin Schwarz, Stephan Köstlbacher, Florian Wascher, Markus Zojer, Thomas Rattei, Matthias Horn

DOI: 10.1073/pnas.2005536117

Media Contact
Dr. Matthias Horn
[email protected]

Related Journal Article

http://dx.doi.org/10.1073/pnas.2005536117

Tags: BiologyMicrobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

ERβ Provides Gender-Specific Defense Against Alzheimer’s Disease

ERβ Provides Gender-Specific Defense Against Alzheimer’s Disease

October 12, 2025
Street View Greenspace Boosts Midlife Women’s Heart Health

Street View Greenspace Boosts Midlife Women’s Heart Health

October 12, 2025

Five-Toed Jerboa: Unveiling High-Altitude Adaptation

October 12, 2025

Comparing Sex-Specific Brain Structures in Humans and Mice

October 12, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1222 shares
    Share 488 Tweet 305
  • New Study Reveals the Science Behind Exercise and Weight Loss

    103 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    100 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    89 shares
    Share 36 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Fluorescent Probe Visualizes Plant Salt Stress

Neuronal Ceroid Lipofuscinosis: Mechanisms and Treatment Advances

Exploring Antioxidants’ Impact on Autism Treatment

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 64 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.