• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Ultrafast hydrogen bond dynamics of liquid water revealed by THz-induced Kerr effect

Bioengineer by Bioengineer
August 18, 2020
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Hang Zhao, Yong Tan, Liangliang Zhang, Rui Zhang, Mostafa Shalaby, Cunlin Zhang, Yuejin Zhao, and Xi-Cheng Zhang

Liquid water is considered the cornerstone of life and has many extraordinary physical and biochemical properties. The hydrogen bond network of liquid water is widely recognized to play a crucial role in these properties. Due to the complexity of intermolecular interactions and the large spectral overlap of relevant modes, the study of hydrogen bond dynamics is challenging. In recent years, exciting the liquids resonantly with terahertz (THz) waves provides a new perspective for exploring the transient evolution of low-frequency molecular motion. However, water has a large absorption coefficient in THz band, the application of the THz-induced Kerr effect technique in hydrogen bond dynamic research has remained challenging.

In a new paper published in Light Science & Application, a team of scientists, led by Professor Yuejin Zhao from Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, China; Professor Liangliang Zhang from Beijing Advanced Innovation Center for Imaging Technology and Key Laboratory of Terahertz Optoelectronics (MoE), Department of Physics, Capital Normal University, China; and co-workers used an intense and broadband THz pulse to resonantly excite intermolecular modes of liquid water and obtained bipolar THz field-induced transient birefringence signals by adopting a free-flowing water film. They proposed a hydrogen bond harmonic oscillator model associated with the dielectric susceptibility and combined it with the Lorentz dynamic equation to investigate the intermolecular structure and dynamics of liquid water. They mainly decompose the bipolar signals into a positive signal caused by hydrogen bond stretching vibration and a negative signal caused by hydrogen bond bending vibration, indicating that the polarizability perturbation of water presents competing contributions under bending and stretching conditions. The results provide an intuitive time-resolved evolution of polarizability anisotropy, which can reflect the intermolecular modes of liquid water on the sub-picosecond scale.

The THz waves can resonantly excite one or several molecular motion modes in liquids, which is a powerful tool for exploring low-frequency molecular dynamics. These scientists summarize the principle of their work:

“We used a THz electric field to resonantly excite the intermolecular modes of liquid water. The transient rotation of a molecule produces an induced dipole moment, which immediately transfers the momentum driven by the THz field to the restricted translational motion of adjacent water molecules. This translational motion can be assigned to a bending mode and a stretching mode, which can lead to the components of polarizability anisotropy perpendicular and parallel to the hydrogen bonds, respectively, thus resulting in bidirectional performance.”

“In the experiment, an intense THz excitation source and an ultrathin flowing water film that replaces traditional cuvettes are the basis for achieving high-quality signals.” they added.

“The ultrafast intermolecular hydrogen bond dynamics of water revealed by a broadband THz pump pulse can provide further insights into the transient structure of liquid water corresponding to the pertinent modes. This breakthrough could open a new venue for detecting the physical mechanisms of the gas phase of water and crystalline and amorphous ices, as well as the complex interaction of reagents with solvent water molecules.” the scientists forecast.

###

Media Contact
Yuejin Zhao
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41377-020-00370-z

Tags: Chemistry/Physics/Materials SciencesOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

First-ever observation of the transverse Thomson effect unveiled

August 23, 2025
blank

Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

August 23, 2025

New Molecular-Merged Hypergraph Neural Network Enhances Explainable Predictions of Solvation Gibbs Free Energy

August 22, 2025

Shaping the Future of Dysphagia Diets Through 3D Printing Innovations

August 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Weather’s Impact on Anopheles Mosquito Populations in Lagos

Ghost Spider’s Maternal Care vs. New Fly Species

DWI-Guided vs. MRI-Based IMRT in Head & Neck

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.