• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

UMD researchers identify structure of blue whirls

Bioengineer by Bioengineer
August 13, 2020
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Discovered in 2016, the phenomenon could lead to improved oil spill remediation and provide a source of clean energy from hydrocarbon fuels

IMAGE

Credit: H. Xiao, University of Science and Technology of China

“Blue whirls” — small, spinning blue flames that produce almost no soot when they burn — have attracted great interest since their discovery in 2016, in part because they represent a potential new avenue for low-emission combustion.

Now, a team of researchers at the University of Maryland and Texas A&M University has identified how these intriguing whirls are structured. Their findings were published in the peer-reviewed journal Science Advances on August 12, 2020.

The team includes now-graduated UMD aerospace engineering PhD students Joseph D. Chung and Xiao Zhang, working with Professor Elaine S. Oran, who is TEES Eminent Research Professor at Texas A&M University and previously Glenn L. Martin Professor at UMD’s A. James Clark School of Engineering, and Dr. Carolyn R. Kaplan of the Department of Aerospace Engineering at UMD.

Using high-performance computing methods at the University of Maryland’s Deepthought2 cluster and other computer systems, the researchers showed that a blue whirl is composed of three different flames — a diffusion flame and a premixed rich and lean flame — all of which meet in a fourth structure, a triple flame that appears as a whirling blue ring. The researchers also found that vortex breakdown — a fluid instability that occurs in swirling flows — enables the blue-whirl structure to emerge.

“The flame and flow structure revealed by the simulations serves as a fundamental base to further investigate how to create the blue whirl in a more controlled way,” said Zhang. “It leads pathways to answering more complex questions.”

“Examples of such questions are: How can we create blue whirls on different scales? Can we bypass the transitional, sooty, dangerous fire whirl stage and create the stable and clean blue whirl directly? The newly developed algorithms and models also provide great exploring tools to find these answers,” Chung said.

Blue whirls were initially discovered in 2016 by Oran, working with Professor Michael Gollner, previously of the Department of Fire Protection Engineering and now at University of California, Berkeley, and Professor Huahua Xiao, previously in the Department of Aerospace Engineering at UMD and now at the University of Science and Technology in Hefei, China. At the time, they were investigating the behavior of a known phenomenon — the fire whirl, also known as fire tornado — when it occurs on a water base.

“Blue whirls evolve from traditional yellow fire whirls,” Oran said. “The yellow color is due to radiating soot particles, which form when there is not enough oxygen to burn the fuel completely.”

“Blue in the whirl indicates there is enough oxygen for complete combustion, which means less or no soot, and is therefore a cleaner burn. We now know that blue whirl will burn all of the fuel available as it exits a burner or from a surface.”

###

Support for the new study was provided by grants from the National Science Foundation, the Army Research Office, the Army Research Laboratory, and the Minta Martin Endowment Funds in the Department of Aerospace Engineering at the University of Maryland, and the TEES Eminent Professorship at TAMU. Computations used in the new study were performed on the University of Maryland, Deepthought2 cluster, Thunder from the Air Force Research Laboratory, and Stampede2 from the Texas Advanced Computing Center.

The A. James Clark School of Engineering at the University of Maryland serves as the catalyst for high-quality research, innovation, and learning, delivering on a promise that all graduates will leave ready to impact the Grand Challenges (energy, environment, security, and human health) of the 21st century. The Clark School is dedicated to leading and transforming the engineering discipline and profession, to accelerating entrepreneurship, and to transforming research and learning activities into new innovations that benefit millions.

Media Contact
Robert Herschbach
[email protected]

Related Journal Article

http://dx.doi.org/10.1126/sciadv.aba0827

Tags: Atmospheric ScienceChemistry/Physics/Materials SciencesEnergy/Fuel (non-petroleum)Technology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

MIT Study Reveals New Insights into Graphite’s Durability in Nuclear Reactors

MIT Study Reveals New Insights into Graphite’s Durability in Nuclear Reactors

August 15, 2025
Efficient Framework Models Ionic Materials’ Surface Chemistry

Efficient Framework Models Ionic Materials’ Surface Chemistry

August 15, 2025

Discovery of Intrinsic HOTI-Type Topological Hinge States in Photonic Metamaterials

August 15, 2025

Scientists Employ Innovative Technique in Quest to Unveil Elusive Dark Matter Particle

August 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Seismic Analysis of Masonry Facades via Imaging

Pediatric Pharmacogenomics: Preferences Revealed by Choice Study

Genkwanin Glycosides Boost Glucose Uptake in Fat

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.