• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Making N-C bond directly from N2: summary and perspective

Bioengineer by Bioengineer
August 7, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ©Science China Press

As the most abundant constituent in Earth’s atmosphere, dinitrogen (N2) is the main nitrogen source of N-containing compounds in the Earth. Therefore, N2 fixation and activation are essential both for nature and humans. Nevertheless, the high bond dissociation energy (942 kJ/mol) and large HOMO-LUMO gap (10.82 eV) make N2 exhibit extremely low reactivity and be regarded as an inert gas.

Currently, the N2 activation and conversion in nature and industry mainly rely on two pathways, in which ammonia (NH3) is the product. In nature, nitrogenase metalloenzymes transfer N2 into NH3 at ambient temperature and pressure. In industry, more than 170 million metric tons of NH3 is produced from the Haber-Bosch process annually, in which N2 reacts with dihydrogen (H2) under harsh condition in the presence of metal catalysts. This NH3 synthesis process consumes about 1-2% of the world’s annual energy supply along with the huge CO2 emission.

Compared to NH3-based N2 fixation process, an alternative route of N2 fixation is the direct conversion of N2 into N-containing organic compounds under mild condition. This approach is always targeted because it provides the potential solution to develop a sustainable system with reduced fossil-fuel requirements.

In a new review published in the National Science Review, Zhenfeng Xi et al. summarize the previous works of transition-metal mediated direct conversion of N2 into organic compounds via N-C bond formation at metal dinitrogen complexes. The review is organized by the coordination modes of the complexes (end-on, side-on, end-on-side-on, etc.) that are involved in the N-C bond formation steps, and each part is arranged in terms of reaction types (N-alkylation, N-acylation, cycloaddition, insertion, etc.) between metal dinitrogen complexes and carbon-based substrates. Besides, earlier works on one-pot synthesis of organic compounds from N2 via ill-defined intermediates are also briefed by the authors.

Besides the homogeneous stoichiometric thermochemical reaction systems, the sporadically reported syntheses involving photochemical, electrochemical, heterogeneous thermo-catalytic reactions are also discussed in this overview.

In the review, the authors point out that some synthetic cycles about direct conversion of N2 into organic compounds have also been developed in recent decades. However, all of these reactions are stoichiometric and the catalytic system for the direct introduction of N2 into organic compounds has not been realized yet. The main factors that prevent these complete synthetic cycles from becoming catalytic process are the rigorous reaction conditions of the N-C bond formation and N-containing organic compounds releasing steps in these cycles, which are incompatible with the preparation steps for metal dinitrogen complexes.

To provide readers with perspectives of future research particularly in direct catalytic and efficient conversion of N2 into N-containing organic compounds under mild conditions, the authors likewise outline the potential development directions. They forecast that the research topics of “new reaction types and systems for N-C bond formation”, “polynuclear metal species cooperative N2 scission and functionalization”, “main group elements promoted N-C bond formation”, “photochemistry and electrochemistry involved N-C bond formation”, “heterogeneous catalysis systems for conversion of N2 into organic compounds” would get more attention in the future.

###

See the article:
Ze-Jie Lv, Junnian Wei, Wen-Xiong Zhang, Ping Chen, Dehui Deng, Zhang-Jie Shi, and Zhenfeng Xi
Direct transformation of dinitrogen: synthesis of N-containing organic compounds via N-C bond formation
Natl Sci Rev (2020)
https://doi.org/10.1093/nsr/nwaa142

Media Contact
Zhenfeng Xi
[email protected]

Related Journal Article

http://dx.doi.org/10.1093/nsr/nwaa142

Tags: Chemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.