• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, July 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Rapid validation for genome assemblies? Introducing KAT: K-mer Analysis Toolkit

Bioengineer by Bioengineer
December 5, 2016
in Science News
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Genome assembly projects are costly in both time and money; where identifying problems with your data post-assembly can be a real setback. With the K-mer Analysis Toolkit (KAT), researchers can access and confirm their results at every stage.

Genome assembly with NGS technologies is like trying to do the hardest jigsaw puzzle you can imagine. The final jigsaw represents the full genome, and the individual pieces represent small fragments of the genome read out by the sequencer. Counterintuitively, to make the data more manageable, it is actually easier to first break these pieces into even smaller pieces called K-mers.

K-mers represent small fragments of the original genome with a fixed number (K) of DNA base pairs. A computer can efficiently work with large quantities of K-mers, then identify connections between these fragments to build-up a representation of the original genome.

K-mer-based techniques are commonly used to efficiently generate genome assemblies, KAT, however, is built to examine and compare K-mer datasets, using each distinct K-mer's underlying properties, such as frequency and nucleotide composition.

Initially, KAT can analyse sequencing data to identify error levels, biases and contamination. Information from this analysis can help researchers decide whether to proceed with downstream tasks such as genome assembly. KAT can then internally back-check your assembly to determine completeness and accuracy without any external reference data – a really useful feature when studying new organisms.

Lead Software Developer, Daniel Mapleson, said on the new tool: "Imagine genome assembly like lego. Instead of trying to piece together long, 8×2-stud pieces with 6×2-stud pieces and 5×2-stud pieces, it's more like making a staircase pattern out of the smaller 2×2-bit pieces, overlapping one stud at a time.

"However, K-mers are not only useful for assembling a genome, by counting the number of K-mers in a sequencing dataset you can learn a lot about it. By looking at the K-mer frequency profiles (K-mer spectra) we can assess the quality of the sequencing data in the first instance, such as working out if the dataset is clean, contains contaminants or is biased in some way. KAT can give answers to these questions quickly, even for non-model organisms where a reference is not available."

Project Leader and corresponding author Bernardo Clavijo commented: "The first thing many researchers do after sequencing a genome is to use-check the K-mer spectra of their data. This tells you if the information you will need to assemble the genome is there before you spend a lot of time, effort and money on doing the rest of the analysis. Now with KAT, researchers can do all kinds of validation and information comparison at this initial stage; but to also carry this forward to validation, we have included the relevant information at the end of the assembly.

"In terms of assembly validation, the tool is particularly useful with diploid genomes that can carry more than one copy of a gene, certain regions can be falsely duplicated or deleted during assembly, leading the researcher to believe there's more or less copies of a gene than there really are. KAT can help to detect these artefacts by tracking both the data generated from the sequencer and data from the assembler, ultimately leading to faster, more accurate conclusions."

###

The paper titled: KAT: A K-mer Analysis Toolkit to quality control NGS datasets and genome assemblies is published in Bioinformatics.

For more information, read our article: KAT got your tongue? An analysis tool to quickly detect problems in sequencing data and genome assemblies.

Media Contact

Hayley London
hayley.london@tgac.ac.uk
160-345-0107

http://www.earlham.ac.uk/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

July 20, 2025

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

July 20, 2025

Pathology Multiplexing Revolutionizes Disease Mapping

July 20, 2025

Single-Cell Atlas Links Chemokines to Type 2 Diabetes

July 20, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    58 shares
    Share 23 Tweet 15
  • New Organic Photoredox Catalysis System Boosts Efficiency, Drawing Inspiration from Photosynthesis

    54 shares
    Share 22 Tweet 14
  • IIT Researchers Unveil Flying Humanoid Robot: A Breakthrough in Robotics

    53 shares
    Share 21 Tweet 13
  • AI Achieves Breakthrough in Drug Discovery by Tackling the True Complexity of Aging

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.