• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Ammonia synthesis from selective electroreduction of nitrates over electron-deficient Co

Bioengineer by Bioengineer
July 28, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ©Science China Press

Ammonia has been widely used for agricultural fertilizers and industrial productions. Additionally, NH3 is expected to serve as next-generation green energy carriers due to its high energy density, low liquefying pressure, small air-fuel ratio and no carbon dioxide emission. At present, NH3 is mainly manufactured through the conventional Haber-Bosch process, which is energy-intensive and releases ~1.5% of global CO2 into the atmosphere. During the past years, electrocatalysis and photo(electro)catalysis of nitrogen gas and water into NH3 at ambient conditions have attracted great attention, but the Faradaic efficiency is greatly hampered by the high dissociation energy of N?N bonds (941 kJ mol-1) and the competitive reaction of H2 evolution. Thus, developing a new route for the ammonia synthesis under mild conditions is urgently desired.

As we all known, excessive nitrates (NO3-) exist in surface and underground water due to the overuse of nitrogen-based fertilizers and the discharge of industrial and domestic sewages, threating the human health. Considering that the dissociation energy of N-O bonds in nitrates is only 204 kJ mol-1 and ammonia can be easily reclaimed from its aqueous solution, it is of great interest to use nitrate contaminants as nitrogen source and water as hydrogen source for the electrochemical synthesis of high value-added ammonia. However, the competitive reaction of H2 generation and the complex eight-electron reduction process retard the FE and selectivity of ammonia during electrocatalytic nitrate reduction reactions. Thus, elaborate design and construction of efficient electrocatalysts is critical.

Very recently, Yu’s research group in Tianjin University fabricated Co/CoO nanosheet arrays (Co/CoO NSAs), in which electron-deficient Co was constructed by the rectification effect of the Schottky contact between the metallic Co and semiconducting CoO. The heterostructured Co/CoO NSAs with electron-deficient Co exhibited excellent performances for the electrochemical reduction of nitrates to ammonia: 93.8% of Faraday efficiency and 91.2% of selectivity, which were much higher than that of the Co NSAs. 15N isotope labeling experiments proved that the produced ammonia originating from the nitrate electroreduction and the product was quantified with 1H NMR spectra. In-situ electrochemical tests were conducted to capture the intermediates and speculate the reaction path. Theoretical calculations revealed that the electrons transferred from Co to CoO at the Co/CoO interface, thus leading to the electron-deficient Co, can effectively inhibit both the competitive reaction of hydrogen evolution and the formation of by-products in the reduction process, thereby improving the Faraday efficiency and selectivity. This work offers a facile strategy to construct efficient electrocatalysts for ammonia synthesis from nitrate reduction powered by renewable electricity.

###

See the article: Yu Y, Wang C, Yu Y, Wang Y, Zhang B. Promoting Selective Electroreduction of Nitrates to Ammonia over Electron-Deficient Co Modulated by Schottky Rectifying Contact. Sci. China Chem., 2020, DOI: 10.1007/s11426-020-9795-x
http://engine.scichina.com/doi/10.1007/s11426-020-9795-x

Media Contact
Yifu Yu
[email protected]

Related Journal Article

http://dx.doi.org/10.1007/s11426-020-9795-x

Tags: Chemistry/Physics/Materials Sciences
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.