• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Big wheel ruts, big economic losses

Bioengineer by Bioengineer
July 23, 2020
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Jodi DeJong-Hughes

Excessively wet field conditions at harvest throughout the North Central and upper Midwest regions resulted in many fields with deep wheel-traffic compaction as evident by deep ruts from combines and grain wagons. Although this is a common occurrence during years with excessive moisture at harvest, the subsequent economic costs are rarely, if ever, projected for large regions.

In an article recently published in Agricultural & Environmental Letters, researchers review the scientific literature on the persistence and quantity of yield reductions due to deep wheel-traffic compaction and then project the state-level economic costs to farmers that may be expect for the upcoming 2020 and 2021 crops in North Dakota and Minnesota.

The researchers estimate a median of 21% yield reduction to the upcoming 2020 and 2021 corn and soybean crops on lands impacted by deep wheel-traffic compaction during the 2019 harvest. Based on these reductions, they project a minimum economic cost of $587 million USD to farmers for every 10% of lands that were compacted during harvest. Moreover, the actual land area may extend up to 30%, resulting in a range of $0-to-$1.76 billion USD of actual costs to North Dakota and Minnesota farmers.

The findings have implications for government policies incentivizing conservation practices, such as diversified crop rotations and inter-seeding cover crops, to either reduce the occurrence of field traffic on wet soils or promote drier soils at harvest.

###

Adapted from Daigh, ALM, DeJong-Hughes, J, Acharya, U. Projections of Yield Losses and Economic Costs Following Deep Wheel-traffic Compaction During the 2019 Harvest. Agric Environ Lett. 2020.

Media Contact
Rachel Schutte
[email protected]

Related Journal Article

http://dx.doi.org/10.1002/ael2.20013

Tags: Agricultural Production/EconomicsAgricultureAlgorithms/ModelsBusiness/EconomicsEarth ScienceEcology/EnvironmentGeology/SoilPlant SciencesResearch/Development
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Exploring Tadpole Buccopharyngeal Morphology in Sphaenorhynchini

August 24, 2025
blank

Triglyceride-Glucose and Waist Circumference: Diabetes Risk Insights

August 24, 2025

Cinnamon Extracts: Impact on Musca domestica Responses

August 24, 2025

Body-Positive Social Media’s Influence on Body Image

August 24, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    83 shares
    Share 33 Tweet 21
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Tadpole Buccopharyngeal Morphology in Sphaenorhynchini

Triglyceride-Glucose and Waist Circumference: Diabetes Risk Insights

Cinnamon Extracts: Impact on Musca domestica Responses

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.