• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

A traditional Japanese art inspires a futuristic innovation: Brain ‘organoids’

Bioengineer by Bioengineer
December 5, 2016
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: UBC

The ancient Japanese art of flower arranging was the inspiration for a groundbreaking technique to create tiny "artificial brains" that could be used to develop personalized cancer treatments.

The organoids, clusters of thousands of human brain cells, cannot perform a brain's basic functions, much less generate thought. But they provide a far more authentic model – the first of its kind – for studying how brain tumours grow, and how they can be stopped.

"This puts the tumour within the context of a brain, instead of a flat plastic dish," said Christian Naus, a professor in the department of cellular and physiological sciences, who conceived the project with a Japanese company that specializes in bioprinting. He shared details about the technique at November's annual Society for Neuroscience conference in San Diego. "When cells grow in three dimensions instead of two, adhering only to each other and not to plastic, an entirely different set of genes are activated."

Naus studies glioblastoma, a particularly aggressive brain cancer that usually takes root deep inside the brain, and easily spreads. The standard care is surgery, followed by radiation and/or chemotherapy, but gliomas almost always return because a few malignant cells manage to leave the tumour and invade surrounding brain tissue. From the time of diagnosis, average survival is one year.

The idea for creating a more authentic model of glioblastoma originated when Naus partnered with a Japanese biotechnology company, Cyfuse, that has developed a particular technique for printing human tissues based on the Japanese art of flower arranging known as ikebana. In ikebana, artists use a heavy plate with brass needles sticking up, upon which the stems of flowers are affixed. Cyfuse's bioprinting technique uses a much smaller plate covered with microneedles.

Working with Naus and research associate Wun Chey Sin, Kaori Harada of Cyfuse skewered small spheres of human neural stem cells on the microneedles. As the stem cells multiplied and differentiated into brain tissue, they merged and formed larger structures known as organoids, about two millimetres to three millimetres in diameter. Although the organoids lack blood vessels, they are small enough to allow oxygen and nutrients to permeate the tissue.

"The cells make their own environment," said Naus, Canada Research Chair in Gap Junctions and Neurological Disorders. "We're not doing anything except printing them, and then they self-assemble."

The team then implanted cancerous glioma cells inside the organoids. Naus found that the gliomas spread into the surrounding normal cells.

Having shown that the tumour invades the surrounding tissue, Naus envisions that such a technique can be used with a patient's own cells – both their normal brain cells and their cancerous cells – to grow a personalized organoid with a glioma at its core, and then test a variety of possible drugs or combinations of treatment to see if any of them stop the cancer from growing and invading.

"With this method, we can easily and authentically replicate a model of the patient's brain, or at least some of the conditions under which a tumour grows in that brain," said Naus. "Then we could feasibly test hundreds of different chemical combinations on that patient's cells to identify a drug combination that shows the most promising result, offering a personalized therapy for brain cancer patients."

###

Media Contact

Brian Kladko
[email protected]
604-827-3301
@UBCnews

http://www.ubc.ca

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Seedling Success in Oromia’s Forest Restoration Efforts

Seedling Success in Oromia’s Forest Restoration Efforts

August 24, 2025
Uncovering In-Utero Diagnosis of Ciliary Dyskinesia: Two Case Studies

Uncovering In-Utero Diagnosis of Ciliary Dyskinesia: Two Case Studies

August 24, 2025

Breast Cancer Recurrence: Insights from Addis Ababa Study

August 24, 2025

Discovering Maize Height Traits Under Water Conditions

August 24, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    120 shares
    Share 48 Tweet 30
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Seedling Success in Oromia’s Forest Restoration Efforts

Uncovering In-Utero Diagnosis of Ciliary Dyskinesia: Two Case Studies

Breast Cancer Recurrence: Insights from Addis Ababa Study

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.