• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, July 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Protein involved in corn’s water stress response discovered

Bioengineer by Bioengineer
July 8, 2020
in Biology
Reading Time: 4 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The protein could help develop drought-resistant plant varieties and products that reduce losses related to climate change.

IMAGE

Credit: GCCRC

Researchers affiliated with the Genomics for Climate Change Research Center (GCCRC), hosted by the University of Campinas (UNICAMP) in the state of São Paulo, Brazil, have discovered a protein involved in corn’s resistance to dry weather, high temperatures, and fungal invasion.

This finding paves the way for the development of more drought-resistant plants and products that reduce losses in production at a time when global climate change threatens crop yields around the world. An article on the study is published in BMC Plant Biology.

The GCCRC is an Engineering Research Center (ERC) established by FAPESP and the Brazilian Agricultural Research Corporation (EMBRAPA).

The researchers named the new protein drought-responsive inactive kinase 1 (DRIK1). They also found a synthetic molecule that binds to DRIK1 and can be used in the future to breed plants in which the activity of the protein is naturally reduced or to develop products that inhibit the protein.
“Under normal conditions, the protein controls the plant’s developmental mechanisms and inhibits stress-response genes. In dry weather or when the plant is attacked by pathogens, levels of the protein are reduced, and the necessary response is triggered to control the effects of water stress, thermal stress or pathogen attack,” said Paulo Arruda (http://www.fapesp.br/cpe/home), a professor in UNICAMP’s Institute of Biology (IB) and GCCRC’s project leader.

To identify the molecule that binds to the protein, the researchers used a platform developed by UNICAMP’s Center for Medicinal Chemistry (CQMED) to discover molecular targets for drugs. Led by Arruda, CQMED is also one of the National Science and Technology Institutes (INCTs) co-funded in the state of São Paulo by São Paulo Research Foundation – FAPESP and the National Council for Scientific and Technological Development (CNPq).

“CQMED’s platform can search libraries for small molecules that inhibit specific proteins,” Arruda explained. “In human health, this is important for the development of a new drug that inhibits a kinase protein involved in a disease, for example. We used the platform to identify a molecule that binds to the plant’s protein kinase, and now we can study the function of the water stress response mechanism in which it is involved.”

The researchers screened a library of 378 compounds that might bind to DRIK1 and identified a synthetic molecule with this capacity (ENMD-2076). They plan to modify it so that it can regulate DRIK1, increasing or decreasing its expression in plants.

The authors of the article also include Bruno Aquino, who worked as a postdoctoral intern at IB-UNICAMP with a scholarship from FAPESP; Viviane Cristina Heinzen da Silva, currently a postdoctoral intern in UNICAMP’s Center for Molecular Biology and Genetic Engineering (CBMEG); and Katlin Brauer Massirer, CQMED’s coprincipal investigator with Arruda.

Water stress response

To find the protein DRIK1, scientists searched a public database for genes related to the response to water stress in plants. They grew corn from seeds in a plant growth chamber for 15 days, watering some of the plants normally throughout the period. The others were divided into three groups and were not irrigated for nine, 12 or 14 days.

Samples of leaves and roots were RNA-sequenced. The researchers found that the water-stressed plants expressed less DRIK1 but that levels of the protein returned to normal when the plants were watered.

Information mined from the same database showed that DRIK1 probably behaves similarly in response to warmer temperatures and attacks by at least two different fungi.

The researchers also analyzed the protein’s three-dimensional structure and mapped potentially important regions for the stress response function. In the future, these regions could serve as targets for compounds that modulate the protein’s action mechanism.

Researchers are now working on the production of plants genetically engineered for altered expression of DRIK1 with the aim of obtaining varieties that are more drought-resistant.

“If we succeed in producing a variety that withstands water stress slightly more than others during a drought, it will be like having genetic insurance,” Arruda said. “There will always be losses, but tons of food will be saved if these losses can be reduced.”

###

About São Paulo Research Foundation (FAPESP)

The São Paulo Research Foundation (FAPESP) is a public institution with the mission of supporting scientific research in all fields of knowledge by awarding scholarships, fellowships and grants to investigators linked with higher education and research institutions in the State of São Paulo, Brazil. FAPESP is aware that the very best research can only be done by working with the best researchers internationally. Therefore, it has established partnerships with funding agencies, higher education, private companies, and research organizations in other countries known for the quality of their research and has been encouraging scientists funded by its grants to further develop their international collaboration. You can learn more about FAPESP at http://www.fapesp.br/en and visit FAPESP news agency at http://www.agencia.fapesp.br/en to keep updated with the latest scientific breakthroughs FAPESP helps achieve through its many programs, awards and research centers. You may also subscribe to FAPESP news agency at http://agencia.fapesp.br/subscribe.

Media Contact
Heloisa Reinert
[email protected]

Original Source

http://agencia.fapesp.br/33571/

Related Journal Article

http://dx.doi.org/10.1186/s12870-020-2328-3

Tags: Agricultural Production/EconomicsAgricultureFood/Food SciencePlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Multi-Proteomic Analysis Reveals Host Risks in VZV

Multi-Proteomic Analysis Reveals Host Risks in VZV

July 30, 2025
blank

Peptidoglycan Links Prevent Lysis in Gram-Negative Bacteria

July 29, 2025

Ingestible Capsules Enable Microbe-Based Therapeutic Control

July 28, 2025

Engineering Receptors to Enhance Flagellin Detection

July 28, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    57 shares
    Share 23 Tweet 14
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    45 shares
    Share 18 Tweet 11
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Multi-Proteomic Analysis Reveals Host Risks in VZV

Merbecovirus S2 Vaccines Trigger Cross-Reactive MERS Protection

Cracking the Code of Cancer Drug Resistance

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.