• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

University of Oregon scientists dissociate water apart efficiently with new catalysts

Bioengineer by Bioengineer
July 2, 2020
in Chemistry
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Using a new approach, they were able to study and improve the water-dissociation reaction that rips apart water molecules in membrane-based electrochemical reactors

IMAGE

Credit: Graphic by Sebastian Z. Oener

EUGENE, Ore. — July 2, 2020 — University of Oregon chemists have made substantial gains in enhancing the catalytic water dissociation reaction in electrochemical reactors, called bipolar membrane electrolyzers, to more efficiently rip apart water molecules into positively charged protons and negatively charged hydroxide ions.

The discovery, published online ahead of print in the journal Science, provides a roadmap to realize electrochemical devices that benefit from the key property of bipolar membranes operation — to generate the protons and hydroxide ions inside the device and supply the ions directly to the electrodes to produce the final chemical products.

The technology behind bipolar membranes, which are layered ion-exchange polymers sandwiching a water dissociation catalyst layer, emerged in the 1950s. While they’ve been applied industrially on a small scale, their performance is currently limited to low current-density operation, which hampers broader applications.

Among them are devices to produce hydrogen gas from water and electricity, capture carbon dioxide from seawater, and make carbon-based fuels directly from carbon dioxide, said co-author Shannon W. Boettcher, a professor in the UO’s Department of Chemistry and Biochemistry and founding director of the Oregon Center for Electrochemistry,

“I suspect our findings will accelerate a resurgence in the development of bipolar-membrane devices and research into the fundamentals of the water-dissociation reaction,” said Boettcher, who also is a member of the Materials Science Institute and an associate in the UO’s Phil and Penny Knight Campus for Accelerating Scientific Impact.

“The performance we demonstrated is sufficiently high,” he said. “If we can improve durability and manufacture the bipolar membranes with our industry partners, there should be important immediate applications.”

Typically, water-based electrochemical devices such as batteries, fuel cells and electrolyzers operate at a single pH across the whole system — that is, the system is either acidic or basic, said the study’s lead author Sebastian Z. Oener, a postdoctoral scholar supported by a German Research Foundation fellowship in Boettcher’s lab.

“Often, this leads either to using expensive precious metals to catalyze electrode reactions, such as iridium, one of the rarest metals on earth, or sacrificing catalyst activity, which, in turn, increases the required energy input of the electrochemical reactor,” Oener said. “A bipolar membrane can overcome this trade-off by operating each electrocatalyst locally in its ideal pH environment. This increases the breath of stable, earth-abundant catalyst availability for each half-reaction.”

The three-member team, which also included graduate student Marc J. Foster, used a membrane-electrode assembly where the polymer bipolar membrane is compressed between two rigid porous electrodes. This approach allowed them to make a large number of bipolar membranes with different water dissociation catalyst layers and accurately measure the activity for each.

The team found that the exact position of each catalyst layer inside the bipolar membrane junction — the interface between a hydroxide-conducting layer and the proton conducting layer in the bipolar membrane — dramatically affects the catalyst activity. This allowed them to use catalyst bilayers to realize record-performing bipolar membranes that essentially dissociate water with negligible lost extra energy input.

“The biggest surprise was the realization that the performance could be improved substantially by layering different types of catalysts on top of each other,” Boettcher said. “This is simple but hadn’t been explored fully.”

A second key finding, Oener said, is that the water dissociation reaction occurring inside the bipolar membrane is fundamentally related to that which occurs on electrocatalyst surfaces, such as when protons are extracted directly from water molecules when making hydrogen fuel in basic pH conditions.

“This is unique because it has not before been possible to separate the individual steps that occur during an electrochemical reaction,” Oener said. “They are all linked, involving electrons and intermediates, and rapidly proceed in series. The bipolar membrane architecture allows us to isolate the water dissociation chemical step and study it in isolation.”

That finding, he said, also could lead to improved electrocatalysts for reactions that directly make reduced fuels from water, such as making hydrogen gas or liquid fuel from waste carbon dioxide.

The discoveries, Boettcher said, provide a tentative mechanistic model, one that could open up the field and motivate many more studies.

“We are excited to see the response of the research community and see if these findings can be translated to products that reduce society’s reliance on fossil fuels,” he said.

###

The co-authors are seeking a patent for the bipolar membrane technology they developed. The National Science Foundation’s Chemical Catalysis Program supported the research.

Links:

About Shannon Boettcher: https://boettcher.uoregon.edu

Oregon Center for Electrochemistry: https://electrochemistry.uoregon.edu/

Department of Chemistry and Biochemistry: https://chemistry.uoregon.edu

Materials Science Institute: https://materialscience.uoregon.edu

Phil and Penny Knight Campus for Accelerating Scientific Impact: https://accelerate.uoregon.edu/

Media Contact
Jim Barlow
[email protected]

Related Journal Article

http://dx.doi.org/10.1126/science.aaz1487

Tags: Chemistry/Physics/Materials Sciences
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Improving Dementia Care with Enhanced Activity Kits

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Digital Health Perspectives from Baltic Sea Experts

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.