• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Optoelectronic parametric oscillator

Bioengineer by Bioengineer
June 30, 2020
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: by Tengfei Hao, Qizhuang Cen, Shanhong Guan, Wei Li, Yitang Dai, Ninghua Zhu, and Ming Li

Parametric oscillators are a driven harmonic oscillator that based on nonlinear process in a resonant cavity, which are widely used in various areas of physics. In the past, parametric oscillators have been designed in pure optical and pure electrical domain, i.e., an optical parametric oscillator (OPO) and a varactor diode, respectively. Particularly, the OPO has been widely investigated in recent years since it greatly extends the operating frequency of laser by utilizing the second-order or third-order nonlinearity, noted that the operating frequency range of the ordinary laser is limited to the simulated atomic energy level. On the other hand, the oscillation in both the OPO and electrical parametric oscillator is a delay-controlled operation, which means that a steady oscillation is confined by the cavity delay since the signal must repeat itself after each round-trip. This operation leads difficulty in frequency tuning, and the frequency tuning is discrete with a minimum tuning step determined by the cavity delay.

In a new paper published in Light: Science & Applications, a team of scientists, led by Professor Ming Li from State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, China, and co-workers have developed a new parametric oscillator in the optoelectronic domain, i.e., an optoelectronic parametric oscillator (OEPO) based on second-order nonlinearity in an optoelectronic cavity. Thanks to the unique energy transition process in the optoelectronic cavity, the oscillation in the OEPO is a phase-controlled operation, leading to a steady single mode oscillation or multi-mode oscillation that is not bound by the cavity delay. Furthermore, the multi-mode oscillation in the OEPO is stable and easy to realize thanks to the phase control of parametric frequency conversion process, while stable multi-mode oscillation is difficult to achieve in conventional oscillators such as an optoelectronic oscillator (OEO) or OPO due to the mode hopping and mode competition effect. The proposed OEPO has great potential in applications such as, microwave signal generation, oscillator-based computation, and radio-frequency phase-stable transfer.

A pair of oscillation modes is converted into each other in the nonlinear medium by a local oscillator in the proposed OEPO. The sum phase of each mode pair is locked by the local oscillator, which ensures stable multimode oscillation that is difficult to realize in conventional oscillators. Moreover, owing to the unique energy transition process in the optoelectronic cavity, frequency of the single-mode oscillation can be independent of the cavity delay. Continuous frequency tuning is achieved without the need for modification of the cavity delay. These scientists summarize the difference between the OEPO and traditional oscillators:

“In conventional oscillators, cavity modes are integer multiples of the fundamental one and are restricted by the cavity delay. The phase evolution of the cavity modes is linear or quasi-linear. In our proposed OEPO, the parametric frequency conversion provides a phase jump for the cavity modes. The phase evolution is not linear owing to this phase jump. We can call such oscillation phase-controlled operation, while the conventional oscillation is delay-controlled operation. As a result, the cavity modes of OEPO are not restricted by the cavity delay.”

“Owing to the unique phase-controlled oscillation in the proposed OEPO, stable and tuneable multimode oscillation is easy to realize. The OEPO can therefore be applied in scenarios requiring stable, wideband and complex microwave waveforms. By increasing the cavity length of the OEPO, the mode spacing of the optoelectronic cavity can be as small as several kHz, which would allow many densely distributed modes to oscillate in the cavity simultaneously. Oscillator-based computation can benefit from such a large mode number. Furthermore, when the OEPO operates in single-mode, the parametric frequency conversion actually works as a phase conjugate operation. Therefore, the OEPO can be used for phase-stable RF transfer since the phase error resulting from cavity turbulence can be auto-aligned.” the scientists forecast.

###

Media Contact
Ming Li
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41377-020-0337-5

Tags: Chemistry/Physics/Materials SciencesOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

First-ever observation of the transverse Thomson effect unveiled

August 23, 2025
blank

Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

August 23, 2025

New Molecular-Merged Hypergraph Neural Network Enhances Explainable Predictions of Solvation Gibbs Free Energy

August 22, 2025

Shaping the Future of Dysphagia Diets Through 3D Printing Innovations

August 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    85 shares
    Share 34 Tweet 21
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Creating the Pediatric Weight Questionnaire for Youth Obesity

Exploring Tadpole Buccopharyngeal Morphology in Sphaenorhynchini

Triglyceride-Glucose and Waist Circumference: Diabetes Risk Insights

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.