• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Superconductivity of pure Bismuth crystal at 0.00053 K

Bioengineer by Bioengineer
December 2, 2016
in Science News
Reading Time: 1 min read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The properties of the 83rd element of the periodic table, namely, Bismuth (Bi) have been studied for more than a century and still continues to draw enormous scientific interests due to its anomalous electronic properties.

Bulk rhombohedral Bismuth (Bi) at ambient pressure is a semi-metal and it remains in the normal state down to 0.010 K. Unlike metals where there is roughly one mobile electron per atom, in a semi-metal like Bi, the concentration of mobile electrons is extremely low (100,000 atoms share a single mobile electron). Hence, the superconductivity (SC) in bulk is thought to be very unlikely due to this extremely low carrier density.

Now, a group of TIFR scientists led by Professor S. Ramakrishnan have discovered superconductivity of a high quality single crystal of Bi (99.998% pure) at 0.00053 K with a critical field of 0.000005 Tesla (nearly 1/8 of earth's magnetic field). The discovery was made by observing a diamagnetic signal using a home made ultra sensitive magnetometer which is housed in a state of the art TIFR copper nuclear refrigerator built in 2011. This discovery cannot be explained by standard models of superconductivity. A new theory is necessary since the assumption that the electronic (Fermi) energy is much larger than the lattice (vibration) energy used in standard models fails in Bismuth.

This exciting discovery has recently been published in Science (online 1 Dec 2016 http://science.sciencemag.org/content/early/2016/11/30/science.aaf8227)

###

Media Contact

S. Ramakrishnan
[email protected]

http://www.tifr.res.in

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Muscle Activity in Centric Relation Methods: A Study

October 13, 2025
blank

Global Gender Disparities in Alopecia Areata Risk

October 13, 2025

Host Z-RNAs Trigger ZBP1 in Viral Infection

October 13, 2025

Electrostatic Adhesion Reduces Aerodynamic Loss in Feathers

October 13, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1232 shares
    Share 492 Tweet 308
  • New Study Reveals the Science Behind Exercise and Weight Loss

    104 shares
    Share 42 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    100 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    91 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Muscle Activity in Centric Relation Methods: A Study

Global Gender Disparities in Alopecia Areata Risk

Host Z-RNAs Trigger ZBP1 in Viral Infection

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 64 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.