• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

High-tech CT reveals ancient evolutionary adaptation of extinct crocodylomorphs

Bioengineer by Bioengineer
June 18, 2020
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

They transitioned from land to water during the Mesozoic era

IMAGE

Credit: G. Fritsch/Leibniz-IZW.

The tree of life is rich in examples of species that changed from living in water to a land-based existence. Occasionally, some species took the opposite direction. New insights into the anatomy of the inner ear of prehistoric reptiles, the thalattosuchians, revealed details about one of these evolutionary turning points. During the Mesozoic era, these now extinct crocodile relatives ventured into the ocean after a long semiaquatic phase. During this process, the skeleton of the thalattosuchians gradually adapted to the new pelagic habitat. In particular, the changes to the inner ear vestibular system of these reptiles enhanced their ability to swim. Compared to whales, which adapted quickly to life in water without a prolonged semiaquatic stage, this is a strikingly different evolutionary path for the same transition. These new findings of an international research team were made possible by the use of a Canon high-tech computed tomography (CT) scanner from the Leibniz Institute for Zoo and Wildlife Research (Leibniz-IZW). The results have been published in the „Proceedings of the National Acadamy of Sciences of the USA”.

Thalattosuchians lived during the Mesozoic about 182 to 125 million years ago and evolved from their land-living relatives to become fast-swimming marine predators. An international research team led by scientists from the School of Geosciences at the University of Edinburgh studied the evolutionary changes which these crocodylomorphs went through during their transition from land to the ocean. The team focused on one of the most important vertebrate sensory systems – the inner ear. Using high-resolution computed tomography (CT), the skulls of 18 thalattosuchians from the late Triassic to the Early Cretaceous were scanned to span much of the evolutionary history of crocodylomorphs. The CT scans were compared with the scans of modern crocodiles. Some of the scans were performed at the Leibniz-IZW in Berlin. The x-ray scans reveal detailed changes in the vestibular system of the inner ear, particularly in the bony labyrinth, which plays a crucial role in sensing balance and spatial orientation. “As they transitioned from land to water, thalattosuchians developed a strikingly compact, reduced and thickened bony labyrinth reminiscent of the reduced labyrinths of other marine reptiles and whales,” explains Guido Fritsch, scientist and CT expert at the Leibniz-IZW. “Extinct land crocodiles, on the other hand, had a taller and narrower bony labyrinth. The labyrinths of semiaquatic crocodiles, which also include modern crocodiles, are longer and more compact than those of their land-living relatives”. These results illustrate that the inner ear morphology of an animal is strongly linked to its habitat.

Interestingly, thalattosuchians developed the reduction of their inner ear labyrinth only after a long semiaquatic phase that lasted tens of millions of years. First, their skeleton changed during this phase – limbs became flippers, the body became streamlined, which allowed them to move efficiently in the water and improved their ability to swim. Only then did the changes in the inner ear develop, possibly as a response to changing sensory requirements, when the thalattosuchians moved into deeper, more open waters. This adaptation process distinguishes them from whales, whose inner ear labyrinth was miniaturised soon after their transition from land to water, without a prolonged semiaquatic phase. Thus, thalattosuchians and whales took different evolutionary routes for the same type of transition.

Future studies will examine the advantages of a reduced inner ear labyrinth for water-living animals, investigate how quickly thalattosuchians developed the adaptations in their inner ear as they entered the water, and how other sensory organs changed during this transition.

###

Media Contact
Guido Fritsch
[email protected]

Original Source

https://www.fv-berlin.de/en/info-for/the-media-and-public/news/high-tech-ct-reveals-ancient-evolutionary-adaptation-of-extinct-crocodylomorphs-transitioning-from-land-to-water

Related Journal Article

http://dx.doi.org/10.1073/pnas.2002146117

Tags: BiologyDevelopmental/Reproductive BiologyEvolution
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Extraction Methods Impact Idesia Polycarpa Oil Quality

September 13, 2025

Evaluating Rohu Fry Transport: Key Water Quality Insights

September 13, 2025

Unveiling Arabidopsis Aminotransferases’ Multi-Substrate Specificity

September 13, 2025

Evaluating Energy Digestibility in Quail Feed Ingredients

September 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Estimating Rice Canopy LAI Non-Destructively Across Varieties

How SARS-CoV-2 Spike Protein Activates TLR4

Boosting Xanthan Gum Production with Essential Oil By-products

  • Contact Us

Bioengineer.org Ā© Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org Ā© Copyright 2023 All Rights Reserved.