• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Skoltech researchers use machine learning to aid oil production

Bioengineer by Bioengineer
June 10, 2020
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Pavel Odinev / Skoltech

Skoltech scientists and their industry colleagues have found a way to use machine learning to accurately predict rock thermal conductivity, a crucial parameter for enhanced oil recovery. The research, supported by Lukoil-Engineering LLC, was published in the Geophysical Journal International.

Rock thermal conductivity, or its ability to conduct heat, is key to both modeling a petroleum basin and designing enhanced oil recovery (EOR) methods, the so-called tertiary recovery that allows an oil field operator to extract significantly more crude oil than using basic methods. A common EOR method is thermal injection, where oil in the formation is heated by various means such as steam, and this method requires extensive knowledge of heat transfer processes within a reservoir.

For this, one would need to measure rock thermal conductivity directly in situ, but this has turned out to be a daunting task that has not yet produced satisfactory results usable in practice. So scientists and practitioners turned to indirect methods, which infer rock thermal conductivity from well-logging data that provides a high-resolution picture of vertical variations in rock physical properties.

“Today, three core problems rule out any chance of measuring thermal conductivity directly within non-coring intervals. It is, firstly, the time required for measurements: petroleum engineers cannot let you put the well on hold for a long time, as it is economically unreasonable. Secondly, induced convection of drilling fluid drastically affects the results of measurements. And finally, there is the unstable shape of boreholes, which has to do with some technical aspects of measurements,” Skoltech PhD student and the paper’s first author Yury Meshalkin says.

Known well-log based methods can use regression equations or theoretical modelling, and both have their drawbacks having to do with data availability and nonlinearity in rock properties. Meshalkin and his colleagues pitted seven machine learning algorithms against each other in the race to reconstruct thermal conductivity from well-logging data as accurately as possible. They also chose a Lichtenecker-Asaad’s theoretical model as a benchmark for this comparison.

Using real well-log data from a heavy oil field located in the Timan-Pechora Basin in northern Russia, researchers found that, among the seven machine-learning algorithms and basic multiple linear regression, Random Forest provided the most accurate well-log based predictions of rock thermal conductivity, even beating the theoretical model.

“If we look at today’s practical needs and existing solutions, I would say that our best machine learning-based result is very accurate. It is difficult to give some qualitative assessment as the situation can vary and is constrained to certain oil fields. But I believe that oil producers can use such indirect predictions of rock thermal conductivity in their EOR design,” Meshalkin notes.

Scientists believe that machine-learning algorithms are a promising framework for fast and effective predictions of rock thermal conductivity. These methods are more straightforward and robust and require no extra parameters outside common well-log data. Thus, they can “radically enhance the results of geothermal investigations, basin and petroleum system modelling and optimization of thermal EOR methods,” the paper concludes.

###

Media Contact
Alina Chernova
[email protected]

Related Journal Article

http://dx.doi.org/10.1093/gji/ggaa209

Tags: Earth ScienceGeology/SoilGeophysics/Gravity
Share12Tweet8Share2ShareShareShare2

Related Posts

Turbulent Flow in Heavily Polluted Tijuana River Elevates Regional Air Quality Risks

Turbulent Flow in Heavily Polluted Tijuana River Elevates Regional Air Quality Risks

August 28, 2025
Unlocking the Potential of In-Between Quantum States to Revolutionize Future Technologies

Unlocking the Potential of In-Between Quantum States to Revolutionize Future Technologies

August 28, 2025

When Ocean Waves Reach the Shoreline

August 28, 2025

Innovative Algorithm Paves the Way for Enhanced Noise Reduction in Quantum Devices

August 28, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Maximizing Liver Graft Use from Circulatory Death Donors

Exploring Cellular Diversity Throughout Fruit Fly Metamorphosis

Bison Restoration: Revitalizing the Yellowstone Ecosystem Through Freedom to Roam

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.