• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, February 5, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

We’re not all equal in the face of the coronavirus

Bioengineer by Bioengineer
June 10, 2020
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: @DR

The genetic variability of immunity lies particularly in the genes of the HLA (Human Leukocyte Antigen) system. These genes produce HLA molecules that are positioned on the surface of cells. When a virus infects an organism, the invader’s proteins are first cut into small fragments called peptides. The HLA molecules then bind on to these fragments and expose them to the surface of the cells, thereby triggering a cascade of immunity reactions designed to eliminate the virus.

Alicia Sanchez-Mazas, a professor at the Anthropology Unit in UNIGE’s Faculty of Sciences, explains: “From the 450 or so most common HLA molecules in hundreds of populations worldwide, we tried to identify the ones that are most strongly bound to the peptides of the new coronavirus.” Over 7,000 peptides can be derived from all of the viral proteins of the coronavirus.

The Geneva-based researcher and her international team used bioinformatic tools to perform the analysis. These can predict the binding affinities between the HLA molecules and the viral peptides on the basis of their physical and chemical properties. The scientists then turned to statistical models to compare the frequencies of these HLA variants in different human populations.

Classification of HLA molecules

The study classified the approximately 450 HLA molecules according to their relative capacity to bind the coronavirus peptides. It provides an essential reference inventory for identifying the genetic resistance or susceptibility of individuals to the virus. The study has also shown that the frequencies of these HLA variants differ significantly from one population to the next.

José Manuel Nunes, a researcher at the Anthropology Unit – and co-author of the article – further explains: “We were surprised to find that Indigenous populations in America had both the highest frequencies of HLA variants that bind the most strongly to the peptides and the lowest frequencies of those that bind the least strongly.” However, as José Manuel Nunes continues, we should not draw too hasty a conclusion from these results: “HLA molecules contribute to the immune response but they are far from being the only element that can be used to predict effective or ineffective resistance to a virus. This is also verified on the ground since America’s Indigenous populations are apparently no less affected than others by COVID-19.”

“Generalist” molecules

In the same study, the authors also analysed the HLA-peptide bindings for all of the proteins of the six other viruses with pandemic potential (two other coronaviruses, three influenza viruses and the HIV-1 virus of AIDS). This showed that many HLA variants are capable of binding strongly to the peptides of all seven viruses studied. Others do the same for all respiratory-type viruses (coronavirus and influenza). This means that there are numerous “generalist” HLA molecules that are effective against a number of different viruses.

“The differences between populations observed in this study are actually differences in the frequencies of the generalist HLA variants that do not bind specifically to the coronavirus but also to other pathogens”, points out professor Sanchez-Mazas. “This is what makes us think that the current differences between populations are the result of past adaptations to different pathogenic pressures, which is extremely informative for understanding the genetic evolution of our species.”

A logical follow-up to the study will be to determine precisely which coronavirus peptides are most strongly bound to the HLA molecules. It is these peptides that will have the highest chances of triggering an effective immune reaction. Identifying them will be vital for developing a vaccine.

###

Media Contact
Alicia Sanchez-Mazas
[email protected]

Related Journal Article

http://dx.doi.org/10.1111/tan.13956

Tags: BiodiversityBiologyEvolutionGenesGeneticsPopulation BiologyVirology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Are Returning Pumas Threatening Patagonian Penguins? New Study Uncovers the Risks

February 5, 2026
Burn Injuries: A Crucial Factor in Shaping Human Evolution, Study Reveals

Burn Injuries: A Crucial Factor in Shaping Human Evolution, Study Reveals

February 5, 2026

Enhanced IVF Success: Innovative Transparent Culture Dishes Boost Embryo Selection Accuracy

February 4, 2026

Dog Behavior Traits Connected to Salivary Cortisol Levels and Serotonin Activity

February 4, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    81 shares
    Share 32 Tweet 20
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Two-Step Voltage Sensor Activation in KV7.4 Channel

A Groundbreaking Innovation Revolutionizes Medical Device Technology

Tropical Peatlands: A Significant Contributor to Greenhouse Gas Emissions

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.