• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Scientists reveal relationship between Dek and Intron retention during muscle stem cells quiescence

Bioengineer by Bioengineer
June 10, 2020
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: HKUST

Muscle stem cells, the reserve stem cell in the skeletal muscles, are responsible for muscle repair after damage. They are the ‘regenerative medicine’ to cure muscle diseases and muscle damages. In a healthy uninjured condition, muscle stem cells are in quiescence, a dormant state, to preserve them well. Whenever there is muscle damage, they will wake up instantly, contribute themselves to build new muscles.

If this dormant state is loosely controlled, muscle stem cells will be wasted when there is no need for repair. If this dormant state is kept too tight, the muscle stem cells could not wake up when they are needed to contribute to muscle repair.

How muscle stem cells control this balance of quiescence remains a topic of heightened interest. Recently, a team of scientists at the Hong Kong University of Science and Technology revealed that intron detention (IR) is a key to the mechanism; when stem cell enters quiescence exit, Dek releases conserved introns, which allow the cell to be activated.

“Using skeletal muscle stem cells, also called satellite cells (SCs), we demonstrated prevalent intron retention (IR) in the transcriptome of quiescent SCs (QSCs),” said Prof. Tom CHEUNG, lead researcher of the team and SH Ho Associate Professor of Life Science at HKUST. “Intron-retained transcripts found in QSCs are essential for fundamental functions including RNA splicing, protein translation, cell-cycle entry, and lineage specification. Our analysis reveals that phosphorylated Dek protein modulates IR during SC quiescence exit.”

While Dek protein is not present in QSCs, Dek overexpression in vivo results in a global decrease of IR, quiescence dysregulation, premature differentiation of QSCs, and undermined muscle regeneration. The researchers also found in their IR analysis on hundreds of public RNA-seq data that IR is conserved among quiescent adult stem cells, which suggests that IR functions as a conserved post-transcriptional regulation mechanism that plays an important role during stem cell quiescence exit.

Their findings were published online in the journal Developmental Cell on June 4, 2020.

“IR has emerged as an important post-transcriptional regulatory mechanism supporting the complexity of gene expression regulation and cell-state transition,” noted Prof. Cheung. “We observed around 1,200 genes possessing IR in QSCs, but in many transcripts, only selective introns were retained. The prevalence of IR among quiescent adult stem cells implies its functional importance in stem cell quiescence. Findings in the study will play a fundamental role in the field as scientists continue the quest to map out the mechanism of stem cell quiescence and stem cell-mediated tissue regeneration.”

###

Media Contact
Johnny Tam
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.devcel.2020.05.006

Tags: BiologyCell Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Scientists Uncover New ‘Hook’ Mechanism in Motor Proteins That Ensures Precise Neuronal Cargo Transport

November 6, 2025
Three Newly Discovered Toad Species Bypass Tadpole Stage, Give Birth to Live Toadlets

Three Newly Discovered Toad Species Bypass Tadpole Stage, Give Birth to Live Toadlets

November 6, 2025

New Evolutionary Classification of Rare CRISPR–Cas Variants

November 6, 2025

European Research Council Awards €10M Synergy Grant to RODIN Project Exploring Cells as Architects of Next-Generation Biomaterials

November 6, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1300 shares
    Share 519 Tweet 325
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Scientists Uncover New ‘Hook’ Mechanism in Motor Proteins That Ensures Precise Neuronal Cargo Transport

Motor Cortex Directly Drives Limb Muscles in Climbing

Three Newly Discovered Toad Species Bypass Tadpole Stage, Give Birth to Live Toadlets

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.