• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

A ‘hole’ lot of sponge! New technique to create super-sponges is a game changer

Bioengineer by Bioengineer
June 10, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists have devised new methods for the post-synthetic modification of Metal-Organic Frameworks to produce properties in the material ideal for gas manipulation.

IMAGE

Credit: dgist

Metal-organic frameworks (MOFs) are unique micromaterial compounds consisting of a sponge-like network of metal ions or clusters linked together by organic linkers, and are able to store specific gas molecules in their pores. MOFs have such a high surface area due to their porosity that a single gram of the material has enough surface area to cover the size of a football field!

These super-sponges are used in research and industry to separate and store gases within tailor-made pockets, enabling their use in gas storage, separations, and sensing. Unlike traditional porous materials, MOFs can be modified as per need; in theory, their structure can be controlled through careful selection of the components of the synthesis process. But in practice, this process is challenged by the restricted synthetic conditions and high thermal and chemical sensitivity of MOFs. An attractive alternative is the post-synthetic modification (PSM) of MOFs.

Leading a team of scientists from Daegu Gyeongbuk Institute of Science and Technology (DGIST), Korea, Professor Jinhee Park approached this issue with the dual goals of giving desired functional groups to MOFs and introducing “mesoscopic” (bigger than microscopic) holes, which improve adsorption kinetics. Professor Park shares her convictions, stating, “We believe that this kind of study can facilitate the use of MOFs as a key material in environmental and energy related areas.”

PSM through carbon-carbon bond formation has historically been difficult due to the lack of suitable reaction conditions that maintain the MOF structures. The scientists introduced stable carbon-carbon bonds by converting existing carbon-hydrogen bonds using elevated temperatures and adding “electrophilic organic halides or carbonyl compounds”, allowing simultaneous introduction of the required functional groups as well as the mesoscopic holes.

Professor Park reports, “These results confirm the ability of the dual-PSM protocol to introduce desired alterations in MOFs while generating highly porous mesostructures.” This technique could potentially improve the safety of workers in enclosed, gas-filled environments such as in the nuclear industry, and provide a more economically viable method of gas storage and purification.

###

References

Authors: Byeongchan Lee, Dohyun Moon,* and Jinhee Park*

Title of original paper:

Microscopic and Mesoscopic Dual-Post-Synthetic Modifications of Metal-Organic Frameworks

Journal: Angewandte International Edition A Journal of the Gesellschaft Deutscher Chemiker Chemie

DOI: 10.1002/anie.20200027

Affiliations: None provided

None provided

*Corresponding author’s email: [email protected]
[email protected]

About Daegu Gyeongbuk Institute of Science and Technology (DGIST)

Daegu Gyeongbuk Institute of Science and Technology (DGIST) is a well-known and respected research institute located in Daegu, Republic of Korea. Established in 2004 by the Korean Government, the main aim of DGIST is to promote national science and technology, as well as to boost the local economy.

With a vision of “Changing the world through convergence,” DGIST has undertaken a wide range of research in various fields of science and technology. DGIST has embraced a multidisciplinary approach to research and undertaken intensive studies in some of today’s most vital fields. DGIST also has state-of-the-art-infrastructure to enable cutting-edge research in materials science, robotics, cognitive sciences, and communication engineering.

Website: https://www.dgist.ac.kr/en/html/sub01/010204.html

About Professor Jinhee Park from DGIST

Dr. Jinhee Park received her Ph.D. in Chemistry (2013) from Texas A&M University under the supervision of Prof. Hong-Cai “Joe” Zhou. After a stint as a senior researcher in the Korea Electrotechnology Research Institute (2013-2015), she is currently an assistant professor in the Department of Emerging Materials Science at Daegu Gyeongbuk Institute of Science and Technology (DGIST). Her current research focuses on design and synthesis of metal-organic frameworks and metal-organic polyhedra for sustainable energy and environment.

Media Contact
Kwanghoon Choi
[email protected]

Original Source

https://dgist.ac.kr/en/html/sub06/060202.html

Related Journal Article

http://dx.doi.org/10.1002/anie.202000278

Tags: Nanotechnology/MicromachinesTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

September 11, 2025
Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

September 11, 2025

Scientists reinvigorate pinhole camera technology for advanced next-generation infrared imaging

September 11, 2025

BeAble Capital Invests in UJI Spin-Off Molecular Sustainable Solutions to Advance Disinfection and Sterilization Technologies

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    64 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Microemulsions Enhance Resistance in Mycoplasma gallisepticum

Enhancing Patient Care with Continuous Medical Learning

Addiction-like Eating Tied to Deprivation and BMI

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.