• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

National survey shows different bacteria on cell phones and shoes

Bioengineer by Bioengineer
June 9, 2020
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Microbes mostly harmless, include groups barely known to science

IMAGE

Credit: Kristen Vincent, https://www.facebook.com/kristenvincentphotography

The largest study of its kind in the U.S. shows thousands of different types of bacteria living on cell phones and shoes, including groups that have barely been studied by scientists.

“This highlights how much we have to learn about the microbial world around us,” said David Coil, a researcher at the University of California, Davis Genome Center and first author on the paper, published June 9 in the journal PeerJ.

In recent years scientists have started to better understand the communities of microbes, or microbiomes, found in basically every environment on the planet. We all carry around with us our own personal microbiome. While some of the microbes found in and on people can be harmful, the overwhelming majority of these microbes are harmless — and some are even beneficial.

In 2013-2014, Coil, with Russell Neches and Professor Jonathan Eisen of the UC Davis Genome Center, UC Davis graduate student and professional cheerleader Wendy Brown, Darlene Cavalier of Science Cheerleaders, Inc. and colleagues launched an effort to sample microbes from spectators at sporting events across the country. Volunteers swabbed cell phones and shoes from almost 3,500 people and sent the samples to the Argonne National Laboratory, University of Chicago, for processing.

The researchers amplified and sequenced DNA from the samples and used the sequence information to identify major groups of bacteria in the samples.

They found that shoes and cell phones from the same person consistently had distinct communities of microbes. Cell phone microbes reflected those found on people, while shoes carried microbes characteristic of soil. This is consistent with earlier results.

The shoe microbes were also more diverse than those found on a person’s phone.

Although samples were collected at events across the country, the researchers did not find any conclusive regional trends. In some cases, there were big differences between samples collected at different events in the same city. In others, samples from distant cities looked quite similar.

Microbial dark matter

Surprisingly, a substantial proportion of the bacteria came from groups that researchers call “microbial dark matter.” These microbes are difficult to grow and study in a lab setting and thus have been compared to invisible “dark matter” that astronomers think makes up much of the universe.

Since they are so difficult to grow in a lab, these dark matter groups have only been discovered as scientists have used genetic sequencing technology to look for microbes in the world around us. Although many of the dark microbial groups come from remote or extreme environments, such as boiling acid springs and nutrient poor underground aquifers, some have been found in more mundane habitats, such as soil.

“Perhaps we were naïve, but we did not expect to see such a high relative abundance of bacteria from these microbial dark matter groups on these samples,” Eisen said.

A number of these dark microbe groups were found in more than 10 percent of samples, with two groups, Armatimonadetes and Patescibacteria, being found in almost 50 percent of swabs and somewhat more frequently in those from shoes than those from phones. Armatimonadetes is known to be widespread in soil.

“A remarkable fraction of people are traveling around with representatives from these uncultured groups on commonplace objects,” Coil said.

###

Additional authors on the paper are: at UC Davis, Jenna Lang and Guillaume Jospin; Jarrad Hampton-Marcell, Argonne National Laboratory; and Jack Gilbert, UC San Diego School of Medicine. The study was funded by the Alfred P. Sloan Foundation.

Media Contact
Andy Fell
[email protected]

Original Source

https://www.ucdavis.edu/news/national-survey-shows-different-bacteria-cell-phones-and-shoes

Related Journal Article

http://dx.doi.org/10.7717/peerj.9235

Tags: BacteriologyBiodiversityBiologyMicrobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

Unveiling Ancient Insights Behind Modern Cytoskeleton Evolution

Unveiling Ancient Insights Behind Modern Cytoskeleton Evolution

August 15, 2025
blank

Researchers Identify Molecular “Switch” Driving Chemoresistance in Blood Cancer

August 15, 2025

First Real-Time Recording of Human Embryo Implantation Achieved

August 15, 2025

Ecophysiology and Spread of Freshwater SAR11-IIIb

August 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Metabolic Inflammation Model Explains Teen Reproductive Issues

Mpox Virus Impact in SIVmac239-Infected Macaques

Epigenetic Mechanisms Shaping Thyroid Cancer Therapy

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.