• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

ANU demonstrates ‘ghost imaging’ with atoms

Bioengineer by Bioengineer
December 1, 2016
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: ANU

A team of physicists at The Australian National University (ANU) have used a technique known as 'ghost imaging' to create an image of an object from atoms that never interact with it.

This is the first time that ghost imaging has been achieved using atoms, although it has previously been demonstrated with light, leading to applications being developed for imaging and remote sensing through turbulent environments.

The atom-based result may lead to a new method for quality control of nanoscale manufacturing, including atomic scale 3D printing.

Lead researcher Associate Professor Andrew Truscott from the ANU Research School of Physics and Engineering (RSPE) said the experiment relied on correlated pairs of atoms.

The pairs were separated by around six centimetres and used to generate an image of the ANU logo.

"One atom in each pair was directed towards a mask with the letters 'ANU' cut-out," Associate Professor Truscott said.

"Only atoms that pass through the mask reach a 'bucket' detector placed behind the mask, which records a 'ping' each time an atom hits it.

The second atom in the pair records a 'ping' along with the atom's location on a second spatial detector.

"By matching the times of the 'pings' from pairs of atoms we were able to discard all atoms hitting the spatial detector whose partner had not passed through the mask.

"This allowed an image of 'ANU' to be recreated, even though – remarkably – the atoms forming the image on the spatial detector had never interacted with the mask. That's why the image is termed a 'ghost'."

Professor Ken Baldwin, also from the RSPE team, said the research may eventually be used for quality control in manufacturing microchips or nano devices.

"We might one day be able to detect in real time when a problem occurs in the manufacturing of a microchip or a nano device," Professor Baldwin said.

Co-author Dr Sean Hodgman said on a fundamental level, the research could also be a precursor to investigating entanglement between massive particles, which could help the development of quantum computation.

"This research could open up techniques to probe quantum entanglement, otherwise known as Einstein's spooky action at a distance," Dr Hodgman said.

###

The ANU team also included PhD students Roman Khakimov, Bryce Henson and David Shin.

The research is published in the journal Nature: http://www.nature.com/nature/journal/v540/n7631/full/nature20154.html

MEDIA NOTE: Images related to the research and a copy of the Nature paper are available via this cloudstor link: https://cloudstor.aarnet.edu.au/plus/index.php/s/JVvos9mwXQttAzt

Media Contact

Andrew Truscott
[email protected]
61-261-253-626
@ANUmedia

http://www.anu.edu.au/media

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Machine Learning Predicts Live Birth Outcomes in IVF

October 7, 2025
Biochar Derived from Invasive Weeds Protects Rice Crops from Toxic Nanoplastics and Heavy Metals

Biochar Derived from Invasive Weeds Protects Rice Crops from Toxic Nanoplastics and Heavy Metals

October 7, 2025

Natural ‘Battery’ of Soil Bacteria and Minerals Dismantles Antibiotics in Darkness

October 7, 2025

Rice University Unveils Second Cohort of Chevron Energy Graduate Fellows

October 7, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    939 shares
    Share 375 Tweet 235
  • New Study Reveals the Science Behind Exercise and Weight Loss

    99 shares
    Share 40 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    95 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    77 shares
    Share 31 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Machine Learning Predicts Live Birth Outcomes in IVF

Biochar Derived from Invasive Weeds Protects Rice Crops from Toxic Nanoplastics and Heavy Metals

Natural ‘Battery’ of Soil Bacteria and Minerals Dismantles Antibiotics in Darkness

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.