• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Researchers developing quick and simple method of glyphosate detection

Bioengineer by Bioengineer
June 8, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Drinking water can also be checked easily

IMAGE

Credit: Professor Tilo Pompe (left) and doctoral researcher David Rettke from the Institute of Biochemistry are developing a method for the rapid detection of glyphosate.
Photo: Swen Reichhold, Leipzig University

Professor Tilo Pompe from the Institute of Biochemistry at Leipzig University has now reported on the scientific basis of the project together with his colleagues in the journal Biosensors and Bioelectronics.

“Until now, scientists have used costly laboratory methods to detect glyphosate. The detection principle we have developed uses the natural reaction of glyphosate in plants. By imitating this mechanism, the detection principle is highly specific,” he said. The corresponding enzyme is bound to a chip surface. During detection, elastic hydrogel microparticles bind to this surface. If glyphosate is present in the detection solution, then depending on the concentration this inhibits the binding of the microparticles to the chip surface. “By using microparticle binding, the detection method offers an extremely high level of sensitivity with regard to pesticide limits for drinking water,” said Pompe. At the same time, the method could be applied in practice as a simple, mobile detection principle using optical readout procedures.

For this reason, the current research project is also working with Saxon companies to develop a mobile readout device. At the same time, a patent application has been filed for the detection principle and companies are currently being sought to bring it to market.

###

Original title of the publication in Biosensors and Bioelectronics:
“Picomolar glyphosate sensitivity of an optical particle-based sensor utilizing biomimetic interaction principles”, https://doi.org/10.1016/j.bios.2020.112262

Media Contact
Susann Huster
[email protected]

Original Source

https://www.sciencedirect.com/science/article/pii/S0956566320302578

Related Journal Article

http://dx.doi.org/10.1016/j.bios.2020.112262

Tags: Agricultural Production/EconomicsBiochemistryChemistry/Physics/Materials SciencesFood/Food Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.