• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Wearable brain scanner technology expanded for whole head imaging

Bioengineer by Bioengineer
June 5, 2020
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: University of Nottingham

Scientists from the University of Nottingham developed an initial prototype of a new generation of brain scanner in 2018 which is a lightweight device that can be worn on the head like a hat, and can scan the brain even whilst a patient moves. Their latest research has now expanded this to a fully functional 49 channel device that can be used to scan the whole brain and track electrophysiological processes that are implicated in a number of mental health problems. Their findings have been published in Neuroimage.

Professor Matt Brookes from the University of Nottingham has led the development of this wearable scanner, he said: “Understanding mental illness remains one of the greatest challenges facing 21st century science. From childhood illnesses such as Autism, to neurodegenerative diseases such as Alzheimer’s, human brain health affects millions of people throughout the lifespan. In many cases, even highly detailed brain images showing what the brain looks like fail to tell us about underlying pathology, and consequently there is an urgent need for new technologies to measure what the brain actually does in health and disease.”

Brain cells operate and communicate by producing electrical currents. These currents generate tiny magnetic fields that can be detected outside the head. Researchers use MEG to map brain function by measuring these magnetic fields. This allows for a millisecond-by-millisecond picture of which parts of the brain are engaged when we undertake different tasks, such as speaking or moving.

Unlike the large cumbersome scanners where patients must remain very still, the wearable scanner allows the patient to move freely. The early prototype of this system in 2018 had just 13 sensors and could only scan limited sections of the brain. Further developments in 2019 enabled the first measurements in children.

The team worked with Added Scientific in Nottingham to develop a novel type of 3D printed helmet, which is key to the function of the 49 channel device. The higher channel count means that the system can be used to scan the whole brain. It can show the brain areas controlling hand movement and vision pinpointed with millimetre accuracy.

Ryan Hill lead author on this study said: “Although there is exciting potential, OPM-MEG is a nascent technology with significant development still required. Whilst multi-channel systems are available, most demonstrations still employ small numbers of sensors sited over specific brain regions and the introduction of a whole-head array is an important step forward in moving this technology towards effective commercial application.”

This new whole head scanner unlocks a hots of new possibilities, like scanning children (who find it hard to keep still) or scanning epileptic patients during seizures to understand the abnormal brain activity that generates those seizures.

Professor Brookes continues: “Our group in Nottingham, alongside partners at UCL, are now driving this research forward, not only to develop a new understanding of brain function, but also to commercialise the equipment that we have developed. Components of the scanner have already been sold, via industrial partners, to brain imaging laboratories across the world. It is thought that not only will the new scanner be significantly better than anything that currently exists, but also that it will be significantly cheaper.”

###

Media Contact
Jane Icke
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.neuroimage.2020.116995

Tags: Chemistry/Physics/Materials SciencesDiagnosticsMental Healthneurobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Validating Injury Simulations Using Muscle Data Under Anesthesia

August 12, 2025
blank

Scientists Develop Safer RNA Therapies to Combat Inflammatory Diseases

August 12, 2025

Frontal Sinus CT: Advancing Forensic ID Accuracy

August 12, 2025

Significant Advances in Type 1 Diabetes Glucose Management Achieved in Recent Years

August 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    78 shares
    Share 31 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    57 shares
    Share 23 Tweet 14
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Validating Injury Simulations Using Muscle Data Under Anesthesia

Scientists Develop Safer RNA Therapies to Combat Inflammatory Diseases

Dipole Model Reveals Inversion Mechanism of Dipolar Magnetic Fields

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.