• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Skoltech scientists get a sneak peek of a key process in battery ‘life’

Bioengineer by Bioengineer
May 27, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Pavel Odinev / Skoltech

Researchers from the Skoltech Center for Energy Science and Technology (CEST) visualized the formation of a solid electrolyte interphase on battery-grade carbonaceous electrode materials using in situ atomic force microscopy (AFM). This will help researchers design and build batteries with higher performance and durability.

A solid electrolyte interphase (SEI) is a thin layer of electrolyte reduction products formed on the surface of a lithium-ion battery anode during several initial cycles. It prevents further electrolyte decomposition, stabilizing the electrode/electrolyte interface, and ensures a long battery life. Forming a SEI film takes time and energy, and its quality largely governs battery performance and durability: a poorly formed SEI results in rapid degradation of battery performance.

Still, the formation of SEI remains poorly understood, and scientists use in situ atomic force microscopy that allows direct observation of this process. Until now, most of these measurements were carried out on Highly Oriented Pyrolytic Graphite (HOPG), a very pure and ordered form of graphite which has a clean and atomically flat basal plane surface. However, HOPG is a poor replacement for actual battery-grade electrode materials, so the process is significantly different from what happens inside a commercial battery.

A Skoltech team led by research scientist Sergey Luchkin and professor Keith Stevenson succeeded in visualization of SEI formation on battery-grade materials. For this, they had to design an electrochemical cell that allowed the measurements necessary for this direct observation of SEI formation.

“Battery-grade materials are powders, and visualizing dynamic processes on their surface by AFM, especially in liquid environment, is challenging. A standard battery electrode is too rough for such measurements, and isolated particles tend to detach from substrate during scanning. To overcome this issue, we embedded the particles into epoxy resin and made a cross section, so the particles were firmly fixed in the substrate,” says Luchkin.

The researchers found that the SEI on battery-grade materials nucleated at different potential than that on HOPG. It was also more than two times thicker and mechanically stronger. Finally, they were able to demonstrate that SEI was better bound with the rough surface of battery-grade graphite than with the flat surface of HOPG.

“Spatially-resolved investigations of battery interfaces and interphases detailed in this work provide significant new insights into the structure and evolution of the anode SEI. Therefore, they provide firm guidelines for rational electrolyte design to enable high performance batteries with improved safety,” adds Stevenson.

###

Media Contact
Alina Chernova
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41598-020-65552-6

Tags: Chemistry/Physics/Materials SciencesEnergy/Fuel (non-petroleum)
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.