• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, January 20, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Saturable plasmonic metasurfaces for laser mode locking

Bioengineer by Bioengineer
May 26, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: by Jiyong Wang, Aurelien Coillet, Olivier Demichel, Zhiqiang Wang, Davi Rego, Alexandre Bouhelier, Philippe Grelu and Benoit Cluzel

Plasmonic metasurfaces are artificial 2D sheets of plasmonic unit cells repeated in a subwavelength array, which give rise to unexpected wave properties that do not exist in nature. In the linear regime, their applications in wavefront manipulation for lensing, holography or polarization control have been intensively studied. However, applications in the nonlinear regime have been rarely reported. Considering the growing demand for saturable absorbers – a special class of nonlinear devices in which transparency (or absorption) depends on light intensity – for ultrafast lasers and neuromorphic circuits, scientists from France, China and Brazil have developed plasmonic metasurfaces providing a remarkably efficient saturable absorption which can be tuned with the polarization of light.

In a new paper published in Light: Science & Applications, scientists from Laboratoire Interdisciplinaire Carnot de Bourgogne, at Université Bourgogne– Franche-Comté, France, from Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, China, and co-workers from Department of Electrotechnology, Federal Institute of Bahia, Brazil, employed planar nanotechnologies to fabricate 2D plasmonic metasurfaces with the precise size, gap and orientation and thus well-controlled plasmonic mode that chemically synthesized counterparts barely handle. The nonlinear saturable absorption under intense laser pumping was systematically investigated by altering the excitation power, the polarization and the geometrical parameters of the plasmonic metasurfaces. The link between the polarimetric saturable absorption and the plasmonic landscape of the metasurfaces has been quantified. More interestingly, the researchers implemented the saturable metasurfaces into a fiber laser cavity architecture and achieved a stable self-starting ultrashort laser pulse generation.

They investigated different plasmonic landscapes such as nanorods, nanocrosses and nanorings as saturable absorbers to generate ultrafast laser pulses. Remarkably, they measured the modulation depth of the saturable absorption of such plasmonic metasurfaces as high as 60%. “Such high modulation depths are uncommon, especially for thin metasurfaces: a comparison between 2D-saturable absorbers shows that the maximum modulation depth reported is less than 11 %, and a similar study with colloidal gold nanorods reports a modulation depth of only around 5 %. A typical SESAM (semiconductor saturable absorber mirror) can feature a modulation depth exceeding 30 %, but from a much thicker device.” Prof. Grelu said.

“The key point is to find the quantitative relationship between the nonlinear absorption and the specific plasmonic modes and this might only be achieved by using planar nanotechnologies to fabricate the plasmonic metasurfaces, e. g. electron-beam lithography, rather than simply spin-coating the colloidal nanoparticles onto the fiber or dipping the fiber into the nanoparticles solutions.” Dr. Cluzel said.

By integrating the plasmonic metasurfaces within a free-space section of the fiber laser architecture, the researchers finally obtained a stable self-starting mode-locked laser operation. The typical duration of a single soliton pulse is 729 fs, with a large signal-to-noise ratio of 75 dB in the radio-frequency domain.

“We validated saturable absorption as a general nonlinear optical property of metal nanostructures, a well-known phenomenon for semiconductors. More importantly, we demonstrated a promising application for nonlinear plasmonics, a way most of related studies paid few attentions to.” Dr. Jiyong Wang added.

###

Media Contact
Benoit Cluzel
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41377-020-0291-2

Tags: Chemistry/Physics/Materials SciencesOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

Lithium Metal Powers Electrochemical PFAS Reduction Breakthrough

Lithium Metal Powers Electrochemical PFAS Reduction Breakthrough

January 20, 2026

Creating Synthetic Protein-Binding DNA Systems in Cells

January 17, 2026

Chiral Catalysis Powers Rotary Molecular Motors

January 16, 2026

Selective GlcNAc to GalNAc Epimerization via Kinetic Control

January 15, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    155 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    148 shares
    Share 59 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    78 shares
    Share 31 Tweet 20
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    55 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Tailored Australian Carbon Farming Boosts Co-Benefits

Rewrite Population structure, regions of homozygosity (ROH) and selection signal of two domesitic goat breeds revealed by whole-genome resequencing as a headline for a science magazine post, using no more than 8 words

Innovative Technologies for Sustainable Crop Protection

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.