• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Oriented hexagonal boron nitride foster new type of information carrier

Bioengineer by Bioengineer
May 22, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: JAIST

Valleytronics gives rise to valley current, a stable, dissipationless current which is driven by a pseudo-magnetic field, Berry curvature. This gives rise to valletronics based information processing and storage technology. A pre-requisite for the emergence of Berry curvature is either a broken inversion symmetry or a broken time-reversal symmetry. Thus two-dimensional materials such as transition metal dichalcogenides and gated bilayer graphene are widely studied for valleytronics as they exhibit broken inversion symmetry.

For most of the studies related to graphene and other two-dimensional materials, these materials are encapsulated with hexagonal boron nitride (hBN), a wide band gap material which has comparable lattice parameter to that of graphene. Encapsulation with hBN layer protects the graphene and other two-dimensional materials from unwanted adsorption of stray molecules while keeping their properties intact. hBN also acts as a smooth twodimensional substrate unlike SiO2 which is highly non-uniform, increasing the mobility of carriers in graphene. However, most of the valleytronics studies on bilayer graphene with hBN encapsulation has not taken into account the effect of hBN layer in breaking the layer symmetry of bilayer graphene and inducing Berry curvature.

This is why Japan Advanced Institute of Science and Technology (JAIST) postdoc Afsal Kareekunnan, senior lecturer Manoharan Muruganathan and Professor Hiroshi Mizuta decided it was vital to take into account the effect of hBN as a substrate and as an encapsulation layer on the valleytronics properties of bilayer graphene. By using first-principles calculations, they have found that for hBN/bilayer graphene commensurate heterostructures, the configuration, as well as the orientation of the hBN layer, has an immense effect on the polarity as well as the magnitude of the Berry curvature.

For non-encapsulated hBN/bilayer graphene heterostructure, where hBN is present only at the bottom, the layer symmetry is broken due to the difference in the potential experienced by the two layers of the bilayer graphene. This layer asymmetry induces a non-zero Berry curvature. However, encapsulation of the bilayer graphene with hBN (where the top and bottom hBN are out of phase with each other) nullifies the effect of hBN and drives the system towards symmetry, reducing the magnitude of the Berry curvature. A small Berry curvature which is still present is the feature of pristine bilayer graphene where the spontaneous charge transfer from the valleys to one of the layers results in a slight asymmetry between the layers as reported by the group earlier. Nonetheless, encapsulating bilayer graphene with the top and bottom hBN in phase with each other enhances the effect of hBN, leading to an increase in the asymmetry between the layers and a large Berry curvature. This is due to the asymmetric potential experienced by the two layers of bilayer graphene from the top and bottom hBN. The group has also found that the magnitude and the polarity of the Berry curvature can be tuned in all the above-mentioned cases with the application of an out-of-plane electric field.

“We believe that, from both theoretical and experimental perspective, such precise analysis of the effect of the use of hBN both as a substrate and as an encapsulation layer for graphene-based devices gives deep insight into the system which has great potential to be an ideal valleytronic material,” Professor Mizuta said.

###

More information: Afsal Kareekunnan et al Manipulating Berry curvature in hBN/bilayer graphene commensurate heterostructures Physical Review B 101 195406 (2020) DOI: 10.1103/PhysRevB.101.195406.

Media Contact
Hiroshi Mizuta
[email protected]

Related Journal Article

http://dx.doi.org/10.1103/PhysRevB.101.195406

Tags: Chemistry/Physics/Materials SciencesNanotechnology/Micromachines
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.