• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Lighting the way for a new fluorination methodology

Bioengineer by Bioengineer
May 21, 2020
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Aleksandra Krolik

Researchers from the Muñiz group have published a paper in Angewandte Chemie – International Edition presenting a new metal-free methodology for the photo-catalysed nucleophilic fluorination of aliphatic hydrocarbon bonds. Daniel Bafaluy, first author of the paper shares the story behind it:

What have you done?

The paper describes a new metal-free method to selectively introduce Fluor in aliphatic C-H bonds that can be applied to late-stage functionalisation. The current methodologies used to this purpose employ electrophilic Fluor reagents, but they present economic as well as environmental drawbacks. So, we decided to take a page from the group’s strategies to carry out aminations using an iodine oxidant and applied the know-how to develop nucleophilic fluorinations.

By using an iodine oxidant, we create in situ a nitrogen-iodine bond which we then photochemically break to create the nitrogen radical. Breaking that bond is quite easy because it’s a very labile species and doesn’t require much energy – a regular lightbulb is enough for this. The new strategy works under mild conditions and uses a (nucleophilic) ammonium fluoride as fluorine source and molecular Iodine as a catalyst to address position-selectivity and produce fewer by-products than the current electrophilic Fluor methods.

Since we employed the nitrogen functionality as the directing group, the strategy can be used on different amine derivatives. In general, we can control the position selectivity by means of the directing group choice and specifically insert the Fluor atom on tertiary positions. This way we gain access to two different kinds of compounds: 1,3 or 1,4 fluoroamines with the same protocol. For example, the reaction works in the presence of benzylic positions, heteroatoms in phenyl groups, etc.

Why is this important?

From a basic-research viewpoint, this work demonstrates that Iodine catalysis has a big potential to be further explored. We present a novel nucleophilic Fluor and metal-free strategy that combines the power of an Iodonium III oxidiser and photochemistry, which is unprecedented in the literature. Also, with our strategy, we selectively control the position where we will introduce the Fluor.

Finally, fluorinated compounds are important from a biological and pharmacological point of view, the presence Fluor enhances the bio-utility of these compounds as drugs or pesticides, among other applications. Unfortunately, their synthesis is quite complex. So, our new method can be quite useful for the late-stage functionalisation of organic molecules.

What’s next?

Aside from its use for late-stage-functionalisation, we would have liked to further optimise the process and apply it to radio-labelling for medical applications, like PET scans for instance. Some of the most common compounds used as radiotracers are molecules containing Fluor-18 isotope, which is generated in synchrotrons and has a 20-minute half-life time. This means the isotope must be rapidly inserted into the radiotracers before injecting it to the patient and doing the scan. Therefore, that needs to be a fast-paced procedure. Current methods use electrophilic Fluor but synchrotrons generate nucleophilic Fluor-18, so our new methodology could be easily adapted to fulfil these medical applications.

###

Media Contact
Berta Carreño
[email protected]

Original Source

http://www.iciq.org/lighting-the-way-for-a-new-fluorination-methodology/

Related Journal Article

http://dx.doi.org/10.1002/anie.202004902

Tags: Chemistry/Physics/Materials SciencesPharmaceutical/Combinatorial Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

February 7, 2026

Barriers and Boosters of Seniors’ Physical Activity in Karachi

February 7, 2026

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Evaluating Pediatric Emergency Care Quality in Ethiopia

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.