• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

International research improves quality of CT scan imagery

Bioengineer by Bioengineer
May 8, 2020
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

CT scans are one of the most effective ways to see inside the body

IMAGE

Credit: National Cancer Institute / Unsplash.com

A window on the body’s internal workings

Computed tomography, or CT, utilizes computational processes to combine many X-ray measurements taken from different angles of the body to produce tomographic images. This non-invasive procedure, which provides a three-dimensional reconstructed view of organs or tissues, allows physicians to see inside the target without cutting.

“[This technique] helps experts to determine the presence of a tumour, its exact location, size and spread. It can also be used to diagnose muscle and bone disorders, infection or blood clots, heart disease, lung nodules, and liver masses,” said Mohammad Mahdi Dehshibi, a postdoctoral researcher at the UOC’s Scene Understanding and Artificial Intelligence laboratory (SUNAI), of the UOC’s Faculty of Computer Science, Multimedia and Telecommunications, of the Pattern Research Centre in Teheran, Iran. “This technology is among the most common imaging tools used to guide biopsy and radiation therapy as well as monitoring the effectiveness of treatments like cancer treatment, internal injuries, and bleeding detection.”

However, computed tomography involves the risk of damaging the structure of DNA and, subsequently, cancer due to the exposure of the body to high-dose X-rays. For example, in the course of a head CT scan, a person receives a dose of radiation equivalent to the total amount they are usually exposed to in 243 days of normal living.

A new algorithm to reduce radiation

In a search to reduce this radiation, the team led by Dehshibi has developed a new post-processing algorithm which increases the quality of reconstructed CT images. While conventional CT methods pick up only a part of the X-ray energy spectrum, the researchers tested a broader energy range, divided into intervals, to reach higher contrast. After testing it on constructed data using GATE/GEANT4 simulation software, they found that the algorithm enhances the quality of the images while reducing noise, which enables better discrimination between different types of tissue with lower doses of X-rays, according to their findings published in the Journal of Information Processing.

“Distinguishing between two different tissues (either normal or abnormal ones) in the same region is critical for physicians or radiologists to plan for further treatments, where this decision is dealing with the patients’ lives,” he said. “Having better tissue discrimination increases the success rate of the medicine’s plan.” The new method increases the capacity to distinguish between tissues by 60% in simulations compared to conventional CT.

“Our viewpoint was proposing a post-processing approach that does not need a substantial hardware reconfiguration and gives more freedom to imaging scientists for further exploration,” Dehshibi said. “We hope that the findings of this study are later examined in the clinical setting to reduce the radioactive effect of irradiating with X-ray.”

###

Media Contact
Rubén Permuy
[email protected]

Original Source

https://www.uoc.edu/portal/en/news/actualitat/2020/228-CT-scan-imagery.html

Related Journal Article

http://dx.doi.org/10.2197/ipsjjip.28.161

Tags: Computer ScienceTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

How ECMO Cannulation Shapes Hemodynamics and Hemolysis Risks

October 11, 2025
Aligned Carbon Nanotube Arrays Revolutionize Terahertz Transistors

Aligned Carbon Nanotube Arrays Revolutionize Terahertz Transistors

October 11, 2025

Targeted Therapeutics: Breakthroughs in Ultrasound Brain Stimulation

October 11, 2025

Exploring Behavior Change Techniques in Mobile Apps

October 11, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1216 shares
    Share 486 Tweet 304
  • New Study Reveals the Science Behind Exercise and Weight Loss

    102 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    99 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    88 shares
    Share 35 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

How ECMO Cannulation Shapes Hemodynamics and Hemolysis Risks

Aligned Carbon Nanotube Arrays Revolutionize Terahertz Transistors

Targeted Therapeutics: Breakthroughs in Ultrasound Brain Stimulation

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.