• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

New technology of ultrahigh density optical storage researched at Kazan University

Bioengineer by Bioengineer
November 30, 2016
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

According to current estimates, dozens of zettabytes of information will need to be placed somewhere by 2020. New physical principles must be found, the ones that facilitate the use of single atoms or molecules as basic memory cells. This can be done with the help of lasers. However, the existing methods of optical storage are limited to the diffraction limit (~500 nm), so the respective recording density is roughly ~1 Gb per square decimeter.

The limitation can be circumvented by the use of highly localized lasers that can manipulate the spatial orientation of single molecules. The expected storage capacity in this case is up to 1 Pb/dm2 which is approximately equal to 1 million standard DVDs. Regulating radiation beyond the diffraction limit with the help of optical nanoantennas and nanoresonators is the basis for three current research areas — refractory plasmonics, organic photovoltaics, and near-field optical memory. All of them are in development at the Nano Optics Lab of KFU (headed by Associate Professor Sergey Kharintsev).

Thanks to subdiffraction localization and field enhancement of light single molecule detection technologies develop rapidly. Dr. Kharintsev's team has used this approach for near-field optical recording. Their research appeared in Nanoscale in November 2016. The authors proposed a new principle of optical storage based on tip-enhanced Raman scattering effect.

Localization of laser light is provided by an optical nanoantenna that is illuminated by a focused laser beam with radial and azimuthal polarization. This approach was developed on the basis of optical anisotropy of azo-dye polymer films (published in ACS Photonics). The azo-dyes are orientated perpendicularly to the polarization direction under polarized light. This has proven to be a tricky result to achieve because near-field polarization depends on the geometry and material of the optical antenna (see Physical Review).

Switching between radial and azimuthal polarization capacitates the recording of optical information in the azo-dye absorption band and reading beyond that band. The switching speed depends on the local mobility of the dyes in glassy environment – a parameter that for polymer films is critically dependent on their thickness. The team plans to create a prototype of organic near-field optical memory of up 1 Pb/dm2 density. The following advances in subdiffraction technology will be linked to laser beams with orbital momentum — such research may further down the road help additionally increase storage density.

Optical disks with petabit capacity will majorly change the efficiency and productivity of cloud services and data centers and disrupt the global storage market. The development of big storage is linked with energy-independent high-speed memory technologies that aim to unite the advantages of random access memory and archive memory. Alternative memory types, such as quantum memory, spin-transfer torque memory, memristors, and ferroelectrical memory, are all still far from practical use.

###

Media Contact

Yury Nurmeev
[email protected]
7-843-233-7487
@KazanUni

http://kpfu.ru/eng

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Polycystic Ovary Syndrome Affects Atherogenic Plasma Index

August 27, 2025

Craving, Relapse, and Childhood Trauma: A Network Study

August 27, 2025

Advancing Biomedical Engineering Education: Summit Highlights Revealed

August 27, 2025

Investigating Ligament and Disc Variations Across Postures

August 27, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Polycystic Ovary Syndrome Affects Atherogenic Plasma Index

Craving, Relapse, and Childhood Trauma: A Network Study

Advancing Biomedical Engineering Education: Summit Highlights Revealed

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.