• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

UBC researcher says management of pine beetle not working

Bioengineer by Bioengineer
November 30, 2016
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A method to control the spread of mountain pine beetles — pheromone baiting — may actually help the pest's population increase, UBC research shows.

A study by Rebecca Tyson, an associate professor of mathematics at UBC's Okanagan campus, used mathematical modelling to examine several mountain pine beetle management strategies used in Banff National Park. The two-year simulation, which included then PhD candidate Shaun Strohm and University of Calgary professor Mary Reid, compared four separate management strategies: no management (monitoring only), pheromone baiting, tree removal, and finally, pheromone baiting combined with tree removal.

Other management strategies are prescribed burning and clearcutting — which Tyson says cause severe changes to the landscape and have not been proven to stop the spread of the beetle.

"What our study found is that where the beetle population is low, the pheromone is actually attracting more beetles and thus helping the beetle population increase," says Tyson.

Tyson explains that each summer, the adult beetle emerges from a tree and looks for a new one where it will nest. Once that tree is found, the beetle emits a pheromone to attract other beetles to the same tree. Other beetles arrive, release more pheromone and the tree is attacked as adult beetles drill into the bark and make tunnels where they lay eggs. By the following summer, the eggs have hatched and turned into adults, and that tree is dead, with the needles turning red. The cycle continues as the beetles move to a neighbouring tree.

Under normal population control circumstances, when a tree is baited with pheromone, it is cut down in winter when the larvae are trapped inside, explains Tyson. Crews also search for other trees near the baited one, and all trees identified to contain beetles are removed.

"If all goes well," says Tyson "the beetle population is so severely reduced that it dies out."

However, her modelling indicates that pheromone baiting is not working precisely the way it was expected.

"From the field work done in Banff, we know that baiting didn't stop the beetle epidemic," says Tyson. "Baiting may have slowed it down, but it did not stop it."

Tyson explains that when the beetle population is low, the beetles actually have a hard time finding each other in the first place. Additional pheromone, placed by humans, help those beetles find each other and attack a tree — the baited one.

"With pheromone baiting this means that humans have put strong signals in the forest that help the beetles find each other. They can then collect in sufficient numbers to attack a tree," she explains. "In these situations, baiting is making things worse for the trees."

Tyson describes the mountain pine beetle as an endemic pest capable of killing entire stands of mature pine. And while the beetle has a short lifespan, climate change and warmer winters have helped the population increase during an epidemic that began in the late 1990s.

Simulation modelling such as the method Tyson used with the mountain pine beetle can be used to help predict the influence of management strategies without creating harm to the landscape.

"This information could be very useful in determining appropriate management responses to future epidemics, and possibly also to the current epidemic as it spreads across the boreal forest," she says. "If more data is gathered on mountain pine beetle dispersal and response to forest edges, we can continue to refine our model and predictions to provide an informative approach for future management decisions."

Tyson's research was recently published in ScienceDirect.

###

Media Contact

Patty Wellborn
[email protected]
250-807-8463

http://ok.ubc.ca/welcome.html

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

University of Ottawa Enters the Betavoltaic Battery Commercialization Arena

University of Ottawa Enters the Betavoltaic Battery Commercialization Arena

August 22, 2025
blank

Calcium Testing in Poultry Unlocks Path to Enhanced Feed Efficiency

August 22, 2025

Just 37% of US States Mandate Medically Accurate Sexual Education in Schools

August 22, 2025

Genetic Research Uncovers New Methods for Early Detection of Blood Cancer

August 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

University of Ottawa Enters the Betavoltaic Battery Commercialization Arena

Calcium Testing in Poultry Unlocks Path to Enhanced Feed Efficiency

Just 37% of US States Mandate Medically Accurate Sexual Education in Schools

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.