• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, July 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Researcher repurposes social networking models to predict COVID spread

Bioengineer by Bioengineer
April 30, 2020
in Health
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Applying different social distancing policies to population statistics

IMAGE

Credit: Tarek Abdelzaher

Since the COVID-19 epidemic began, there has been plenty of opportunity to observe how a vast array of truths, half-truths, and falsehoods can flare up and spread like wildfire across social media, swirl around, and just as quickly get buried and forgotten. It could serve as a fascinating case study for CSL and computer science professor Tarek Abdelzaher, who for years has studied how information propagates through social media.

But he and his students Chaoqi Yang and Ruijie Wang have taken a big step further. They recognized that the dissemination of information through a population of online users is closely analogous to the transmission of a virus through a population of flesh-and-blood human beings, and that realization has inspired them to repurpose their information propagation models to predict COVID-19 spread. Furthermore, they have made the findings available to the public on an interactive website.

Abdelzaher says that the work is related to his DARPA SocialSim project, which kicked off in 2017 with the goal of developing simulation models for predicting information propagation cascades.

“Information, similarly to viral contagion, propagates through human contacts over ‘facilitating media’ that are a key construct in those models,” he explains. “For information cascades, a facilitating medium might be an online subreddit, a virtual hangout, or a Facebook wall. They constitute virtual spaces that allow information to spread. In the world of viral contagion, physical spaces, such as stores, offices, and homes, become the facilitating media.”

Abdelzaher, a Willett Faculty Scholar, points out that social distancing policies manipulate the availability of some of those “media.” As a result, within his team’s models, different social distancing policies can be applied to population statistics to predict the spread of COVID-19 in different nations or states.

Epidemiologists already have models for predicting infection spread, but the “SIR” models used in epidemiology–so-called because they predict the numbers of individuals in a population who will be “susceptible, infectious, or recovered” at a certain time–don’t inherently provide a way to adapt their predictions to different policies, such as social distancing, that would affect a disease’s spread. Initial results show that the new models from Abdelzaher’s team are more accurate than SIR models in predicting the impact to date of social distancing measures.

Abdelzaher, Yang, and Wang have launched an interactive website that anyone can visit to see predictions based on the most recent available data. They will continue to update it as their research progresses.

“There is currently mounting pressure to remove some [social distancing] restrictions for economic reasons,” notes Abdelzaher. The new website will allow people to see the consequences of adding, removing, or modifying social distancing rules. “Users will be able to interact to display curves for their country or state, as well as to ask ‘what if’ questions, like ‘what if social distancing was removed in my state from today onwards?’, or ‘what if X% of the impacted workforce were to go to back to work?’,” he says.

Abdelzaher hopes that the website will provide the public with a valuable source of insight that otherwise isn’t readily available. While numerous websites are providing up-to-date data on what has already happened, people don’t currently have a way to access the kind of predictive power that the new website offers.

“I think we can fill that gap with reasonably accurate results,” he says.

###

Media Contact
Allie Arp
[email protected]

Original Source

https://csl.illinois.edu/news/abdelzaher-repurposing-social-networking-models-predict-covid-spread-under-different-social

Tags: BehaviorComputer ScienceEpidemiologyInternetTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Novel Plasma Synuclein Test Advances Parkinson’s Diagnosis

July 29, 2025
blank

Obesity’s Impact on Pancreatic Surgery Outcomes Compared

July 28, 2025

Virion Movement in Sialoglycan-Cleaving Respiratory Viruses

July 28, 2025

Bariatric Surgery’s Impact on Circulating S100A9

July 28, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    54 shares
    Share 22 Tweet 14
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    45 shares
    Share 18 Tweet 11
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Novel Plasma Synuclein Test Advances Parkinson’s Diagnosis

Advancing Microbial Risk Assessment Through Detection Technology Evolution

Obesity’s Impact on Pancreatic Surgery Outcomes Compared

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.