• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Learning from fish and flags to inform new propulsion strategies

Bioengineer by Bioengineer
April 29, 2020
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Connections between resonance and nonlinearity in swimming performance of a flexible heaving plate

IMAGE

Credit: Debra Levey Larson

From the vibrations of the rear-view mirror just as your car reaches precisely 70 miles per hour to a building that collapses when, in an earthquake, it begins to vibrate at a specific frequency, there is untapped energy that could be harnessed for propulsion.

In recent research, Andres J.Goza, found relationships between frequencies and the passive dynamics at play when vehicles move in air or water toward a better understanding of how to use these forces to enhance performance.

According to Goza, assistant professor in the Department of Aerospace Engineering at the University of Illinois at Urbana-Champaign, his work is an effort to seek new bio-inspired propulsion strategies.

“Fish swim very efficiently and birds can fly very efficiently, so how can we use those observations to inform real paradigm shifts in the locomotion strategies that we engineer,” he said. “For example, the wing of a bird and the tail of a fish are flexible and when these animals fly or swim, the air and water around them induce passive motion.

“Another example is when air blows past a flag, making it flap, it affects the air motion around it,” Goza said. “If we can understand this fluid-structure interaction or fluid-structure coupling at a very basic level, could we use it to design aircraft and submarines with a very different kind of locomotion?”

Goza said the speed of the air or water flow around the vehicle and the density of the materials they are made from play a role, both in the resonance and in the passively induced motion.

“Scientists have understood, outside of this fluid-structure interaction context, that there’s a profound response when you excite a structure or system at its resonant frequency,” Goza said. “But what role do these passive dynamics play, and can we tune the structural properties so that the resonant frequency of your system is somehow meaningfully tied to the flow–that is, to the motion that you’re prescribing?”

One sticking point in this research was that the standard definition of resonant frequency assumed that the structure was in a vacuum. “But it’s not; it’s in fluid and the fluid affects what that resonance frequency is,” Goza said.

Consequently, step one was to define a notion of resonance that incorporates the effect of the fluid.

“One of the big contributions of this research was unambiguously defining this resonant frequency, and then confirming that over a wide range of different parameters we actually see performance benefits near this resonant frequency,” he said. “Namely, if the structure flaps or moves at a certain frequency within this flow, it leads to an improvement in thrust.”

Goza said the larger heave amplitude computations are more reflective of fish swimming. The results indicated that at these larger amplitudes, both resonant and non-resonant mechanisms played a role. “Resonance is defined in terms of super small undulations, but we understand that fish are actually swimming at large amplitudes,” Goza said. “We bridged the gap between defining what resonance means in this small amplitude setting when there’s a fluid present, but also embracing the fact that fish undergo much larger emotions. We established connections to results in the small amplitude case, finding that performance benefits persist near resonance even at large amplitudes that are actually relevant to biological propulsion.”

Depending on the regime, Goza said, the peak thrust is near this resonant frequency associated with small amplitude. “The key is, as you move to these large amplitudes, resonance continues to play a predominant role. We found that the small linear amplitude notion of resonance was appropriate for predicting and understanding these peaks and thrust in the majority of cases.

“If this passive motion can be useful in locomotion, it can reduce the amount of energy put into the system,” Goza said. “We can harness these passive dynamics and let them do the propulsion for us.”

Goza said one of the next phases of this research will be to look at modern active materials that can be tuned to have the right resonant frequency to induce passive dynamics with the desired output.

###

The study, “Connections between resonance and nonlinearity in swimming performance of a Flexible heaving plate,” written by Andres Goza from the University of Illinois and Daniel Floryan and Clarence Rowley from Princeton University, is published in the Journal of Fluid Mechanics.

Media Contact
Debra Levey Larson
[email protected]

Original Source

https://aerospace.illinois.edu/news/learning-fish-and-flags-inform-new-propulsion-strategies

Related Journal Article

http://dx.doi.org/10.1017/jfm.2020.60

Tags: Mechanical EngineeringResearch/DevelopmentTechnology TransferTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Fasting Essential for Calorie Restriction Benefits in Alzheimer’s Mice

August 5, 2025
Surfactin-C15 Breaks Cell Membranes: A Dual Study

Surfactin-C15 Breaks Cell Membranes: A Dual Study

August 5, 2025

Best Tooth and Stage for Dental Age Estimation

August 5, 2025

Genetic Insights into Echinococcus from Greece and Neighbors

August 5, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    71 shares
    Share 28 Tweet 18
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Fasting Essential for Calorie Restriction Benefits in Alzheimer’s Mice

Surfactin-C15 Breaks Cell Membranes: A Dual Study

Best Tooth and Stage for Dental Age Estimation

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.