• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Histones and their modifications are crucial for adaptation to cell stress

Bioengineer by Bioengineer
April 17, 2020
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: IRB Barcelona.

The genetic material–DNA– of plants and animals (within the latter humans) is stored inside the cell, and DNA packing is guaranteed by proteins called histones. Furthermore, histones play a key role in regulating the activation of gene expression and its timing: a given stimulus modifies a histone, making it allow or repress the expression of a gene. The Cell Signaling laboratory at IRB Barcelona, ??led by Eulàlia de Nadal and Francesc Posas, has identified more than 200 regions (amino acids) in histones that, under cellular stress, undergo modifications to regulate the response to this condition.

Also, they have observed that stress of distinct nature, such as that caused by excess heat or salinity, leads to different histone modifications, thereby pointing to a “personalized” adaptation response to each type of stress. The study has been carried out on the yeast Saccharomyces cerevisiae, a model organism widely used in biomedicine.

“The histone modifications that regulate gene expression under normal conditions are being widely studied,” says Eulàlia de Nadal. “However, little was known about the role of histones in responses to cellular stress, which have to be rapid and highly dynamic. Information about this role is important because the regulation of histones is associated with a wide range of diseases,” she concludes.

Details about the modifications: heat and salt stress

Histones can undergo distinct modifications through the addition of different chemical groups. As well as identifying the key points of the amino acid sequence at which the modifications take place, the group of researchers has described in detail some of the modifications that occur in response to salt and heat stress. They have provided details of the modification, how it occurs and how it influences gene regulation.

On the basis of these results, the laboratory is to develop two lines of research. On the one hand, the researchers will address other specific modifications that occur in response to stress. And, on the other hand, to understand which mechanisms are relevant in different diseases, they will study how these modifications correlate with those that take place in human cells.

###

Reference article:

Cristina Viéitez, Gerard Martínez-Cebrián, Carme Solé, René Böttcher, Clement M Potel, Mikhail M Savitski, Sara Onnebo, Marc Fabregat, Ali Shilatifard, Francesc Posas, Eulàlia de Nadal

A genetic analysis reveals novel histone residues required for transcriptional reprogramming upon stress

Nucleic Acids Research (2020) DOI: 10.1093/nar/gkaa081

Media Contact
Communications, IRB Barcelona
[email protected]

Original Source

http://www.irbbarcelona.org/en/news/histones-and-their-modifications-are-crucial-for-adaptation-to-cell-stress

Related Journal Article

http://dx.doi.org/10.1093/nar/gkaa081

Tags: BiologyCell Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.