• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

A surprizing finding shines new light on the largest group of human proteins

Bioengineer by Bioengineer
November 29, 2016
in Science News
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Frank Schmitges et al.

Toronto scientists have discovered that the largest group of human proteins, which work as genome gatekeepers to control gene activity, are even more diverse in their roles than previously thought. The finding expands our understanding of how proteins "read" the DNA and could lead to a more accurate interpretation of individual genomes.

Teams led by Professors Timothy Hughes and Jack Greenblatt, of the University of Toronto's Donnelly Centre, have shown that proteins called C2H2-zinc fingers (C2H2-ZF) can control gene activity in new and surprizing ways. Reporting in the December issue of Genome Research, the researchers also reveal DNA binding sites for more than a hundred C2H2-ZFs as part of an ongoing effort to decode genome sequences that do not code for genes.

Despite being the largest group of human proteins — counting 700 members — the C2H2-ZFs are poorly understood partly because their sheer abundance and diversity make them hard to study. Yet knowing how they work is important because they help orchestrate gene activity. Of 20,000 human genes, only a subset is active in the cell at any given time. This subset determines if the cell will, say, build blood, or the brain or go haywire to become cancer.

The C2H2-ZF proteins work by directly binding the DNA to control the genes nearby. Named after their finger-like structures that, aided by zinc ions, clasp the DNA, C2H2-ZFs have previously been thought to act by stifling a wide range of genes. In a previous study that included about 40 C2H2-ZFs, the team showed that each protein recognized a unique DNA snippet as its landing site in the genome, raising the possibility that the rest of the group could be just as diverse.

This was indeed confirmed in the present study in which the teams mapped DNA binding sites, most of which were unique, this time for 131 C2H2-ZF proteins. But they also uncovered a whole new way in which the C2H2-ZF proteins can be regulated to vastly expand their job repertoire in the cell.

In addition to binding the DNA, it turned out that each C2H2-ZF can partner with a motley of other proteins that could potentially tweak its ability to switch genes on and off in a unique way. The finding upended the previous thinking in which C2H2-ZF proteins were seen as limited in their ability to bind other proteins–half of them were thought to interact with a single protein that helps them gag target genes, while the rest lack the usual molecular features that help proteins contact one another.

"Our key finding is that there's almost as much diversity in the protein-protein interactions as there is in the DNA binding sequences. It tells us that the way the C2H2-ZF proteins work is almost certainly more complicated than we would have expected," said Hughes, who is also a professor in U of T's department of molecular genetics and a fellow of the Canadian Institute for Advanced Research (CIFAR).

The kinds of proteins that C2H2-ZFs interact with suggest that their roles go beyond clamping down on genes and may even act to turn genes on or help package DNA inside the cell.

The study also shines light on how the C2H2-ZF evolved to become the largest and most diverse group of proteins we have. The DNA sequences that C2H2-ZF proteins recognize look a lot like they had come from viruses, some of which plagued our mammalian ancestors as long as 100 million years ago. This kind of viral DNA has been called "selfish DNA" because it spreads by inserting itself randomly in a host's genome.

It is thought that the C2H2-ZF proteins evolved to shut down this selfish DNA, their legion expanding to keep up with new intruders. Once the viral DNA was squashed for good, the C2H2-ZF proteins were able to take on new roles in shutting down mammalian genes. And now, this new data suggest that the C2H2-ZF proteins branched out even more than previously thought to acquire wholly unexpected functions by binding to other proteins.

Knowing how C2H2-ZFs work will give scientists a better handle on predicting which genes they control and how this may relate to disease. So far, mass genome sequencing studies have fallen short from being able to tell one's risk of common diseases, such as cancer or diabetes, because we still don't know enough about the meaning of individual differences between genomes.

"Even today, 15 years after the human genome was sequenced, if you give any piece of DNA to a geneticist and ask them what this does, generally they are unable to tell you that. But the more we learn about how human proteins recognize the DNA and what they do, the better our ability will be to interpret genome sequences and say what the significance of the variants is," said Hughes.

###

@DonnellyCentre
http://www.thedonnellycentre.utoronto.ca/

Media Contact

Jovana Drinjakovic
[email protected]
416-543-7820
@UofTNews

http://www.utoronto.ca

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Gut-Brain Link: How NEC Affects Newborn Brains

Gut-Brain Link: How NEC Affects Newborn Brains

August 22, 2025
blank

Microscopy Reveals Details of Anterior Human Eye

August 22, 2025

Signaling Pathways Drive Cisplatin Resistance via SOX2

August 22, 2025

Study Finds No Link Between Animal Protein Consumption and Increased Mortality Risk

August 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Gut-Brain Link: How NEC Affects Newborn Brains

Microscopy Reveals Details of Anterior Human Eye

Signaling Pathways Drive Cisplatin Resistance via SOX2

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.