• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Self-isolation or keep calm and carry on — the plant cell’s dilemma

Bioengineer by Bioengineer
April 14, 2020
in Health
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: John Innes Centre

Self-isolation in the face of a marauding pathogen may save lives but it comes at the expense of life-sustaining essentials such as transport, communication and connectivity.

This leaves decision makers with a dreadful dilemma as they judge when it’s time to relax lockdown measures.

New research suggests plants must balance similar trade-offs as they respond to pathogens that could rip through their defence cell by cell.

Plant cells communicate with their neighbours by tunnel-like connections called plasmodesmata. This is one way that cells exchange information and resources.

Plasmodesmata are lined by the same membrane that surrounds the cell and they allow molecules to move from one cell into the surrounding cells.

When a cell perceives a threat like an invading fungus or bacteria, the plasmodesmata close over and the cells are temporarily isolated.

In this study researchers at the John Innes Centre used bioimaging approaches to investigate what proteins are involved in this process of cellular self-isolation.

They show that the cell wall material of fungus – called chitin – triggers different responses in the membrane that lines the plasmodesmal tunnels when compared to the responses it triggers in the membrane that surrounds the cell body.

The signaling cascade in plasmodesmata triggers the production of a polysaccharide called callose that forces the plasmodesmal tunnel to close over and for the cells to isolate themselves.

“This indicates that cells control their connectivity independently of other responses, although we don’t yet know why this is,” explains Dr Christine Faulkner of the John Innes Centre.

The study also finds that guard-like receptors that sit in the plasmodesmata are different from those that sit in the rest of the membrane, but both receptors use the same enzyme.

“This is puzzling”, says Dr Faulkner, “but we also discovered that the mechanism of activation of this enzyme in the plasmodesmata is different to the mechanism used in the rest of the membrane. Thus, it seems that while both receptors use the same tool (the enzyme) to transmit a signal, they use it differently for different purposes.”

The requirement for specific signaling in the plasmodesmal part of the cell membrane suggests that the vital processes requiring cell-to-cell connectivity must be regulated independently of immune response.

The study concludes: “This raises questions whether there is a critical requirement for cells to balance connectivity and resource exchange with a protective mechanism imposed by isolation.”

###

The article: Chitin perception in plasmodesmata characterises submembrane immune-signaling specificity in plants, appears in PNAS

Media Contact
Adrian Galvin
[email protected]

Related Journal Article

http://dx.doi.org/10.1073/pnas.1907799117

Tags: BiologyCell BiologyDevelopmental/Reproductive BiologyMicrobiologyMolecular BiologyPlant Sciences
Share13Tweet8Share2ShareShareShare2

Related Posts

Epigenetic Aging and Cognition in Childhood Cancer Survivors

November 27, 2025

TUBB Mutations Disrupt Ciliogenesis, Cause Ciliopathy Symptoms

November 27, 2025

Promoting Physical Activity in Autistic Youth: A Review

November 27, 2025

Duchenne Muscular Dystrophy: Gene Therapy Insights from Qatar

November 27, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    203 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    120 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    104 shares
    Share 42 Tweet 26
  • Scientists Create Fast, Scalable In Planta Directed Evolution Platform

    102 shares
    Share 41 Tweet 26

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Epigenetic Aging and Cognition in Childhood Cancer Survivors

TUBB Mutations Disrupt Ciliogenesis, Cause Ciliopathy Symptoms

Modeling Surge Arrester Leakage Current via Conductivity Estimation

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.