• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Single-electron pumping in a ZnO single-nanobelt transistor

Bioengineer by Bioengineer
April 10, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ©Science China Press

Single electron pumping devices with high efficiency and controllability at room temperature play an essential role in implement spin-based quantum computing and quantum information processing. In a recent study, which was published in SCIENCE CHINA Physics, Mechanics & Astronomy, single-electron transistors (SETs) based on single indium-doped ZnO nanobelt (NB) were built by Xiulai Xu, et al., scientists at the Institute of Physics, Chinese Academy of Sciences. Clear Coulomb oscillations in the SETs were observed at 4.2 K. Single- and double-electron pumping was also achieved by using a back-gated AC signal for different pumping voltages.

Diluted magnetic semiconductors (DMSs), which possess both magnetic and semiconductor properties, was found that the magnetic properties in host materials could be formed by introducing small portions of magnetic materials and that their optoelectronic transport properties did not concurrently degrade. These researchers stated: “Many DMSs, such as indium-doped Mn5Ge3 and (Ga, Mn)As, have been used for precise spin injection and detection purposes. However, the low Curie temperatures, caused by narrow bandgap, limit their application at room temperature. Therefore, wide bandgap semiconductor materials such as ZnO doped with transition metals are highly desirable.”

The doping of transition metals in ZnO can improve its ferromagnetic properties, which are advantageous for future applications in spintronics. Among these ZnO materials, they pointed out, “ZnO nanobelts (NBs) are attractive candidates for optoelectronic and nanoscale electronic applications because of the direct wide bandgap (3.37 eV), high exciton binding energy at room temperature (60 meV), and large surface-to-volume ratio.”

Being highly charge sensitive, single-electron transistors (SETs) are ideal for studying quantum effects such as Coulomb blockade, tunneling, and single-electron pumping and have shown vast applications in charge detection, thermometry, single-spin detection, single-photon detection, and so on. According to the researchers, single-electron tunneling-based devices such as SETs and single-electron pumps have been investigated using metal, semiconducting materials, and DMSs [(Ga, Mn)As-based SETs] for spin storage and single-electron charging. However, only a few studies on ZnO NB SETs have been conducted, and there has been no research into the advantages for single-electron spin control of single-electron pumping in ZnO quantum dots.

In the study, SETs based on single indium-doped ZnO NB were built. Strong Coulomb oscillations were observed at 4.2 K. “Periodic and non-periodic Coulomb diamonds observed were attributed to the presence of single uniform quantum dots and multi-quantum dots, respectively. The charging energy values were 4 and 5 meV in the case of the single and multi-dots systems, respectively, and the corresponding diameters of the quantum dots were approximately 86 and 70 nm,” they explained.

Single- and double-electron pumping was also achieved by using a back-gated AC signal for different pumping voltages. The realization of controlled single- and double-electron pumping in ZnO quantum dots with the simplest configuration was a significant step toward understanding the coherent properties of electron spin in quantum dots for future applications.

The results indicate that ZnO NBs are promising candidates for single-electron spin detection, which is useful for quantum computing and quantum information. Furthermore, the simple configuration of the device used in the study will make it more compatible with standard Si technology in the future.

###

This research was funded by the National Natural Science Foundation of China under Grant Nos. 51761145104, 11934019, 61675228, 11721404, and 11874419; the Strategic Priority Research Program, the Instrument Developing Project and the Interdisciplinary Innovation Team of the Chinese Academy of Sciences under Grant Nos. XDB28000000 and YJKYYQ20180036; and the Key R&D Program of Guangdong Province (Grant No. 2018B030329001).

See the article:

H. Ali, J. Tang, K. Peng, S. B. Sun, A. Falak, F. L. Song, S. Y. Wu, C. J. Qian, M. Wang, X. T. Zhang, M. A. Rafiq, and X. L. Xu, Single-electron pumping in a ZnO single-nanobelt quantum dot transistor, Sci. China-Phys. Mech. Astron. 63, 267811 (2020), https://doi.org/10.1007/s11433-019-1494-4

http://engine.scichina.com/doi/10.1007/s11433-019-1494-4

Media Contact
Xu Xiulai
[email protected]

Related Journal Article

http://dx.doi.org/10.1007/s11433-019-1494-4

Tags: Chemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Neg-Entropy: The Key Therapeutic Target for Chronic Diseases

Multidisciplinary Evidence-Based Guidelines for Therapeutic Drug Monitoring of Biologics in Inflammatory Bowel Disease

Early Tuberculosis Treatment Lowers Sepsis Mortality in People with HIV

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.