• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

A new strategy to create 2D magnetic order

Bioengineer by Bioengineer
April 10, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ©Science China Press

Grain boundaries, which are consist of periodic arrangement of structural units and generally recognized as a two-dimensional “phase”, can exhibit novel properties that are not existed in the intrinsic bulk crystal. The altered continuity of atomic bonding at grain boundaries cause local chemical environment dramatically change at a few unit cells, subsequently alter local electrical activity, magnetic order or other physical properties. The effects of grain boundary on properties is even more significant in the complex oxides due to the substantial interactions between lattice and other order parameters. Therefore, such an inhomogeneity of materials with grain boundary may dominate the entire response in nanoscale devices and have garnered particular interest in designing novel functional devices.

The nature of structural defects is determined by the atomic arrangements. Correlating the properties of single defect-based device with its specific atomic structure is vital and prerequisite for the device application. However, experimentally revealing such a structure-property relation is very challenging due to the atomic-size and chemical and structural complexity of defects, especially for the perovskite oxides that contain multiple elements.

In a new research article published in the Beijing-based National Science Review, scientists at Peking university, Institute of Physics, Chinese Academy of Sciences, and Tianjin University present atomic mechanism of spin-valve magnetoresistance at the asymmetry SrRuO3 grain boundary. The asymmetry atomic structure is very different from the common assumption based on prototype perovskite SrTiO3. The transport measurements exhibit the spin-valve magnetoresistance for the as fabricated centimeter-size and sub-nm-width Σ5(310) SrRuO3 grain boundary. Advanced scanning transmission electron microscopy and spectroscopy reveal its atomic arrangements based on which the first principles calculations reveal its electronic properties. Scientists find that owing to the Ru-O octahedron distortion near the asymmetric grain boundary, Ru d orbital reconstructs and results in reduction of magnetic moments and change of spin polarization along the grain boundary, forming a magnetic/nonmagnetic/magnetic junction. The calculations bridge the atomic structure with transport properties.

“Our findings can help us to understand the past transport properties such as the negative magnetoresistance and absence of tunneling magnetoresistance at the SrRuO3 grain boundary, and also predict new effects of SrRuO3 grain boundary such as the interfacial magnetoelectric coupling when SrRuO3 is used as a bottom electrode for growth of ferroelectric thin films.” Prof. Peng Gao said, “In a broader perspective, control of defect structure at atomic scale can realize peculiar physical properties, providing us a new strategy to design devices with new low-dimensional magnetic properties by using boundary engineering.”

This work was supported by the National Key R&D Program of China (2016YFA0300804), National Equipment Program of China (ZDYZ2015-1), National Natural Science Foundation of China (51672007 and 11974023), the Key-Area Research and Development Program of GuangDong Province (No. 2018B030327001?2018B010109009) and “2011 Program” Peking-Tsinghua-IOP Collaborative Innovation Center of Quantum Matter. Project was also supported by State Key Laboratory of Powder Metallurgy, Central South University, Changsha, China

###

See the article:

Xujing Li, Li Yin, Zhengxun Lai, Mei Wu, Yu Sheng, Lei Zhang, Yuanwei Sun, Shulin Chen, Xiaomei Li, Jingmin Zhang, Yuehui Li, Kaihui Liu, Kaiyou Wang, Dapeng Yu, Xuedong Bai, Wenbo Mi, Peng Gao

Atomic origin of spin-valve magnetoresistance at the SrRuO3 grain boundary

Natl Sci Rev

https://doi.org/10.1093/nsr/nwaa004

The National Science Review is the first comprehensive scholarly journal released in English in China that is aimed at linking the country’s rapidly advancing community of scientists with the global frontiers of science and technology. The journal also aims to shine a worldwide spotlight on scientific research advances across China.

Media Contact
Peng Gao
[email protected]

Related Journal Article

http://dx.doi.org/10.1093/nsr/nwaa004

Tags: Chemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.