• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Gone with the wind: Mission conclusion for instrument to monitor ocean winds

Bioengineer by Bioengineer
November 29, 2016
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: NASA

On Sept. 21, 2014, NASA scientists and engineers launched RapidScat toward the orbiting International Space Station, 250 miles above the Earth's surface, with a few objectives in mind: improve weather forecasting on Earth, provide cross-calibration for all international satellites that monitor ocean winds, and improve estimates of how ocean winds change throughout the day, around the globe.

Rapid Scat Gif

RapidScat's radar technology used microwaves, bounced off the ocean's surface, to determine wind speed and direction.

Credits: NASA

On Jan. 28, 2015, ISS-RapidScat saw the Nor'easter's strongest sustained winds (red) between 56 and 67 mph

On Jan. 28, 2015, ISS-RapidScat saw the Nor'easter's strongest sustained winds (red) between 56 and 67 mph just off-shore from Eastern Cape Cod.

Credits: NASA

ISS-RapidScat data on a North Atlantic extratropical cyclone

ISS-RapidScat data on a North Atlantic extratropical cyclone, as seen by the National Centers for Environmental Prediction Advanced Weather Interactive Processing System used by weather forecasters at NOAA's Ocean Prediction Center.

Credits: NASA/JPL-Caltech/NOAA

Following the 2009 end of mission of QuikScat, a similar instrument on a free-flying satellite in operation before RapidScat, NASA was challenged with the task of engineering a replacement device – and quickly — as the data QuikScat provided had helped meteorologists to predict weather patterns and prepare for large storm systems for more than a decade. Using the existing data and power services of the station and hardware initially built as a spare for QuikScat, RapidScat not only recreated its predecessors work, but greatly improved the timeliness of data transmissions and the potential for cross-calibration of other sensors designed to measure sea-surface winds. RapidScat data was used all over the world by government laboratories and meteorological agencies, scientists, private companies, students and individuals to track the progression of a storm's strength.

Because of its ability to monitor weather systems around the world, RapidScat played a vital role in storm prediction and allowed maritime and air traffic time to avoid potentially dangerous weather conditions. RapidScat's radar technology used microwaves, bounced off the ocean's surface, to determine wind speed and direction. Choppy, large waves send back stronger signals, indicating that heavy winds are present in the area.

RapidScat observations played an essential role in National Oceanic and Atmospheric Administration (NOAA) weather forecasting by aiding in their ability to measure temporal changes of wind fields and allowing them to study changes within one hour in high latitudes, compared to six hours with previous instruments.

Wind speed is not only important in the prediction of bad weather and investigation of global wind circulation patterns, but also helps organizations like NASA to plan launches, flights and landings of space- and aircrafts. RapidScat aided in the successful NASA Orion test flight by providing near-real-time wind speeds, allowing NASA to choose a safe landing zone for the spacecraft.

The station's orbit is not synchronized with Earth's rotation, as all other space borne scatterometers currently are. This made the station an ideal home for the RapidScat instrument because its orbit allowed it to intersect and cross-calibrate with the international constellation of scatterometers. This paved the way to measure and compare data from various scatterometers, together providing wind measurements multiple times each day, giving meteorologists and other scientists a better look into how storms developed. Moving forward, these organizations will use data transmitted from the newly-launched ScatSat, an ocean wind sensor instrument of the Indian Space Research Organization.

RapidScat completed its successful two-year mission, outlasting its original decommission date before suffering a power loss in mid-August. Although RapidScat is no longer transmitting data back to Earth, the station hosts many other Earth-observation tools and investigations such as Crew Earth Observations, an investigation which arms crew members with handheld digital cameras to observe how the Earth changes over time, from human-caused changes to natural disasters (including storm systems); the Cyclone Intensity Measurements from the ISS or CyMISS ( also known as the Tropical Cyclone project), a Center for the Advancement of Science in Space (CASIS)-funded Earth-Observation experiment that seeks to develop detailed information on tropical storm structure to better estimate storm intensity, which will help government agencies to better prepare communities for impending natural disasters; and the Cloud-Aerosol Transport System (CATS), a lidar instrument measuring atmospheric profiles of aerosols and clouds to better understand their properties and interactions, as well as providing data useful to improving climate change models

###

For a more in-depth look at the RapidScat mission, visit http://winds.jpl.nasa.gov/missions/RapidScat/.

Media Contact

Rachel Hobson
[email protected]
281-244-7449
@NASA_Johnson

http://www.nasa.gov/centers/johnson/home

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Gut-Brain Link: How NEC Affects Newborn Brains

Gut-Brain Link: How NEC Affects Newborn Brains

August 22, 2025
blank

Microscopy Reveals Details of Anterior Human Eye

August 22, 2025

Signaling Pathways Drive Cisplatin Resistance via SOX2

August 22, 2025

Study Finds No Link Between Animal Protein Consumption and Increased Mortality Risk

August 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Gut-Brain Link: How NEC Affects Newborn Brains

Microscopy Reveals Details of Anterior Human Eye

Signaling Pathways Drive Cisplatin Resistance via SOX2

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.