• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Physical force alone spurs gene expression, study reveals

Bioengineer by Bioengineer
April 1, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Photo by L. Brian Stauffer

CHAMPAIGN, Ill. — Cells will ramp up gene expression in response to physical forces alone, a new study finds. Gene activation, the first step of protein production, starts less than one millisecond after a cell is stretched – hundreds of times faster than chemical signals can travel, the researchers report.

The scientists tested forces that are biologically relevant – equivalent to those exerted on human cells by breathing, exercising or vocalizing. They report their findings in the journal Science Advances.

“We found that force can activate genes without intermediates, without enzymes or signaling molecules in the cytoplasm,” said University of Illinois mechanical science and engineering professor Ning Wang, who led the research. “We also discovered why some genes can be activated by force and some cannot.”

Previous studies revealed that some genes are susceptible to physical manipulations of cells, but Wang and his colleagues were the first to show that stretching cells alone could influence how such genes are expressed. The team first demonstrated this phenomenon with genes they had inserted in cells. The current study finds that naturally occurring genes can also be activated by stretching.

In the new work, the researchers observed that special DNA-associated proteins called histones played a central role in whether gene expression increased in response to forces that stretched the cell. Histones regulate DNA, winding it up to package it in the nucleus of the cell.

One class of histones, known as Histone H3, appear to prevent force-responsive gene expression when methylated at an amino acid known as lysine 9. Methylation involves adding a molecular tag known as a methyl group to a molecule.

The scientists observed that H3K9 methylation was highest at the periphery of the nucleus and largely absent from the interior, making the genes in the interior more responsive to stretching.

“The genes near the nuclear periphery cannot be activated even if you stretch them, whereas the genes that are close to the center can be activated by stretching,” Wang said. “This is because the H3K9 histones at the periphery are highly methylated.”

The researchers found they could suppress or boost force-responsive gene expression by increasing or decreasing H3K9 histone methylation.
The scientists also tested whether the frequency of an applied force influenced gene expression. They found that cells were most responsive to forces with frequencies up to about 10-20 hertz.

“Living cells in the human body experience forces of various frequencies (for example breathing, heartbeats, walking, running, jumping and singing), typically ranging from 0.2 hertz to hundreds of hertz,” the researchers wrote. At the highest frequencies, cells became stiffer and the enzymes that guide gene transcription could not bind to the DNA, the team found.

Cells’ immediate responsiveness to force makes sense from an evolutionary perspective, Wang said.

“Cells must be able to respond quickly to things in their environment so they can survive,” he said.

###

The National Institutes of Health supported this research.

Editor’s notes:

To reach Ning Wang, call 217-265-0913; email [email protected].

The paper “Force-induced gene upregulation does not follow the weak power law but depends on H3K9 demethylation” is available to members of the media from [email protected].

Media Contact
Diana Yates
[email protected]

Tags: BiochemistryBiologyBiomechanics/BiophysicsCell BiologyGeneticsMolecular BiologyMolecular Physics
Share14Tweet9Share2ShareShareShare2

Related Posts

Building Larger Hydrocarbons for Optical Cycling

Building Larger Hydrocarbons for Optical Cycling

October 4, 2025
blank

Scientists Discover How Enzymes “Dance” During Their Work—and Why It Matters

October 4, 2025

Electron Donor–Acceptor Complexes Enable Asymmetric Photocatalysis

October 4, 2025

AI Advances Enhance Sustainable Recycling of Livestock Waste

October 3, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    93 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    90 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    69 shares
    Share 28 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Herbal Remedies for Hypertension: Insights from Trinidad

Revolutionary Graph Network Enhances Protein Interaction Prediction

Impact of Triglyceride-Glucose Index on Neonatal Health

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.