• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Rodents and a rocket carried these researchers’ dreams to space

Bioengineer by Bioengineer
April 1, 2020
in Biology
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

For researchers studying bone or muscle loss that might be caused by diseases, aging or a sedentary lifestyle, the space station is a unique place to perform experiments that can help us understand how the body works

IMAGE

Credit: The Jackson Laboratory

The human body evolved within the constant force of Earth’s gravity. To prevent bone and muscle atrophy during their stays in space, astronauts must exercise every day. For researchers studying bone or muscle loss that might be caused by diseases, aging or a sedentary lifestyle, the microgravity environment aboard the International Space Station is a unique place to perform experiments that can help us understand how the body works.

Animal models such as mice are instrumental to this kind of microgravity research, serving as the subjects of Rodent Research-19 (RR-19), which is investigating a proposed method of preventing loss of bone and keeping muscles strong and healthy.

RR-19, also known as Mighty Mice in Space, investigates myostatin and activin. These molecular signaling pathways influence the breakdown of muscles and bones. Researchers are studying them as possible targets for keeping muscles and bones healthy during spaceflight, and enhancing recovery following a return to Earth.

The scientists behind this research are Se-Jin Lee and Emily Germain-Lee of the University of Connecticut School of Medicine. Lee and Germain-Lee also hold appointments at The Jackson Laboratory and Connecticut Children’s Medical Center, respectively. Lee and Germain-Lee, a married couple, have been working together for the past 10 years on this research, but decades of work have led to the Mighty Mice experiment.

Lee and Germain-Lee met in college as undergrads while studying biochemistry. Both went on to get advanced degrees and pave their own paths in research, Lee focusing on studying muscle and Germain-Lee focusing on bone disorders. “I’ve invested a great deal of my life in taking care of children who have a lot of conditions that affect their bones.” Germain-Lee said. “Their bones may be broken, but their spirits aren’t.”

Twenty years ago, Lee’s lab made a discovery. He uncovered new information about the behavior of myostatin and its influence on muscle growth. “I began thinking that microgravity would be the perfect place to perform myostatin experiments and put our developmental drugs to the test,” Lee said.

Myostatin typically limits muscle growth. When you block it, muscles can grow much larger than normal size. When Lee genetically engineered mice to lack myostatin completely, their muscles grew to twice normal size. Naturally occurring mutations causing the blockage of myostatin have also provided evidence of the power of the protein. Belgian Blue cattle, bred in Europe after World War II to accommodate increased demand for more meat, was the first species identified with a naturally occurring mutation in the myostatin gene.

The couple continued to work independently until Germain-Lee had a thought. She noticed that her patients with weak bones also often went on to have weak muscles. “We were talking one day, and I said, ‘what if this drug could also help with bone development?'” Germain-Lee said.

That set off a new round of experiments. The couple officially partnered on the lab bench to see if Lee’s discovery could also help Germain-Lee’s patients with deficient bone density. They found that this drug could potentially benefit both of their areas of research.

A decade later, 40 years after first meeting in college and 35 years into their marriage, came a grand opportunity. The ISS U.S. National Laboratory would enable Lee to conduct an experiment similar to the one Lee had considered back in the 90s. “No experiment here on Earth can evenly simulate bone and muscle loss like microgravity can. The space station is the perfect environment to be able to test experimental bone and muscle loss drugs,” says Germain-Lee. “It’s everything I’ve ever wanted to work on all in one project. It feels like it all came together in this experiment.”

The scientists planned an investigation to send 40 mice to live in microgravity aboard the International Space Station with 40 comparable mice studied on Earth as the control group. Some of the mice are genetically engineered not to produce any myostatin, while others are normal mice that receive a drug capable of blocking myostatin, as well as activin, which regulates bone mass. The goal is to improve muscle and bone mass simultaneously.

Lee and Germain-Lee got their chance to run the experiment in Dec. 2019 with the launch of SpaceX’s 19th cargo resupply mission to the space station. On launch day, the couple nervously watched the rocket on the pad. As the countdown hit zero, the enormity of the moment hit Germain-Lee. “Watching the launch, I just started crying. And not just crying a little bit. I started sobbing. It must have been the emotion from 20 years of work all coming out at once,” Germain-Lee said. “From a professional perspective, it’s so rewarding to work on something that I know will benefit my patients. From a personal perspective, to be doing this with Se-Jin has been tremendously fulfilling.”

In space, astronauts used the Bone Densitometer to see how the bones of the mice were responding to microgravity. “During the day, I could focus on other things, but when I went to bed, all I could think about was those mice,” Germain-Lee said. “After the capsule came back, we had to wait until the mice were back in the lab.”

The SpaceX Dragon spacecraft returned to Earth in Jan. 2020, carrying the mice among the many research investigations and supplies from the station. With the mice home, the pair went into data analysis mode. The results look promising, and the couple is already thinking about next steps and how to build on the research. This study could support the development of therapies for a wide range of conditions that cause muscle and bone loss on Earth and in space. “If this comes to fruition as a treatment in humans, it would be a dream come true,” says Germain-Lee.

###

Media Contact
Courtney Beasley
[email protected]

Original Source

http://www.nasa.gov/mission_pages/station/research/news/rodents-and-a-rocket-carried-researchers-dreams-into-space-rodent-research-19

Tags: BiologyGenesGenetics
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Revolutionary Graph Network Enhances Protein Interaction Prediction

October 4, 2025
DOG Gene Family in Wheat Drives Seed Dormancy

DOG Gene Family in Wheat Drives Seed Dormancy

October 4, 2025

Discovery of MrSTP20: Sugar Transporter in Salt Stress

October 4, 2025

SNARE Neofunctionalization Driven by Vacuole Retrieval

October 4, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    93 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    90 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    69 shares
    Share 28 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Gut Microbiome and Hormones in Postmenopausal Breast Cancer

Herbal Remedies for Hypertension: Insights from Trinidad

Revolutionary Graph Network Enhances Protein Interaction Prediction

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.