• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

Stem cells police themselves to reduce scarring, Stanford study finds

Bioengineer by Bioengineer
November 28, 2016
in Science
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Treating mice with a compound that increases the expression of an inactive protein helped them heal from injury with less scarring, according to a study by researchers at the Stanford University School of Medicine.

The researchers are hopeful that their findings could one day be used to help keep muscles supple during normal aging and to treat people with diseases like muscular dystrophy.

"Fibrosis occurs in many degenerative diseases and also in normal aging," said Thomas Rando, MD, PhD, a professor of neurology and neurological sciences. "It negatively impacts muscle regeneration by altering the stem cell niche and inhibiting the stem cell function. In addition, as more scarring occurs, muscles become stiff and can't contract and relax smoothly."

Rando, who is the director of Stanford's Glenn Center for the Biology of Aging, is the senior author of the study, which will be published online Nov. 28 in Nature. Former graduate student Alisa Mueller, MD, PhD, is the lead author.

Self-policing stem cells

The researchers discovered that stem cells embedded in muscle fibers do some fancy gene-expression footwork in order to respond appropriately to injury, disease or aging. In particular, the cells toggle between producing a full-length, active version of a protein that responds to external signals to divide and a shorter, inactive version of the same protein that attenuates the growth signal and prevents an overly enthusiastic response that can lead to scarring or fibrosis.

The researchers studied a protein called platelet-derived growth factor receptor alpha, or PDGFR alpha, that sits on the surface of muscle-embedded stem cells called fibro-adipogenic progenitors, or FAPs. These stem cells are responsible for generating the connective tissue scaffolding necessary to support muscle development and regeneration.

PDGFR alpha straddles the cell membrane. The portion outside the cell serves as a landing pad for external signals that encourage the FAPs to begin dividing, or proliferating. The interior portion of the protein passes the signal along to other proteins inside the cell to get the ball rolling. Although some proliferation is necessary to repair an injury, an overly enthusiastic response can lead to scarring and fibrosis that inhibits muscle function. So it's imperative the cells strike the right balance in their response.

The researchers found that the cells have devised a novel, unexpected way to police themselves. The cells found a way to generate a shortened version of the protein that is missing the interior portion of its structure. This shortened version hangs out on the cells' membranes and sequesters the growth signals away from the active form of PDGFR. Without the interior part of the protein, the message to grow is stopped in its tracks.

"We've found that the cells actively regulate the production of the inhibitory form of the protein, which is very surprising," said Rando. "If they make less, the degree of fibrosis increases; if they make more, it decreases."

The cells produce the shortened form of the protein by recognizing and using a specific series of nucleotides in the messenger RNA that encodes the instructions to make the PDGFR alpha protein. The nucleotide code tells the cell's messenger RNA-processing machinery to create a shorter-than-normal message. As a result, the protein that is made from that messenger RNA is also truncated.

Artificially increasing, decreasing expression

Mueller, Rando and their colleagues used a type of small molecule called a vivo-morpholino that can bind and block access to small sections of messenger RNA to artificially increase or decrease expression of the inhibitory version of the PDGFR alpha protein. They found that increasing the amounts of the inhibitory version allowed both young and old mice to heal from injury with less fibrosis and scarring. Conversely, decreasing the amount increased the severity of fibrosis.

"We'd like to test this approach in a mouse model of muscular dystrophy next," said Rando. "Interestingly, the vivo-morpholino we used is similar to a small oligonucleotide therapy currently being tested in clinical trials to stimulate the production of proteins missing in patients with Duchenne muscular dystrophy. Perhaps we could also use this approach to reduce fibrosis in this disease."

###

Other Stanford co-authors of the study are postdoctoral scholar Cindy van Velthoven, PhD; former undergraduate student Kathryn Fukumoto; and former postdoctoral scholar Tom Cheung, PhD.

The research was supported by the Glenn Foundation for Medical Research, the National Institutes of Health (grants AG043235, AG036695, AG23806, AR062185 and AG47820), the California Institute for Regenerative Medicine and the Department of Veterans Affairs.

Stanford's Department of Neurology also supported the work.

The Stanford University School of Medicine consistently ranks among the nation's top medical schools, integrating research, medical education, patient care and community service. For more news about the school, please visit http://med.stanford.edu/school.html. The medical school is part of Stanford Medicine, which includes Stanford Health Care and Lucile Packard Children's Hospital Stanford. For information about all three, please visit http://med.stanford.edu.

Print media contact: Krista Conger at (650) 725-5371 ([email protected])

Broadcast media contact: Margarita Gallardo at (650) 723-7897 ([email protected])

Media Contact

Krista Conger
[email protected]
650-725-5371
@StanfordMed

http://med.stanford.edu/news.html

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    80 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Varroa destructor: Honey Bee Parasite and Management Strategies

Assessing the FAST Walk System for Enhancing Gait Recovery in Chronic Stroke Patients Through Neuromodulation

Pusan National University Introduces 3D-Printed Brain Vessels to Revolutionize Atherosclerosis Research

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.