• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, February 9, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Adjustable even and odd harmonic radiation characteristics of crystal target by strain engineering

Bioengineer by Bioengineer
March 6, 2020
in Chemistry
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ©Science China Press


As a cutting-edge subject in the cross research field, solid high-order harmonics not only provide a new strategy for high-efficiency, wide energy spectrum, short pulse light source, but also can be used to better study the electronic structure and nonlinear optical properties of condensed matter.

A recent study has revealed the novel harmonic spectrum distribution dependent on crystal orientation by adjusting the strain of single layer AlN, which is entitled “Strain effect on the orientation-dependent harmonic spectrum of monolayer aluminum nitride” and published in SCIENCE CHINA Physics, Mechanics & Astronomy. Prof. Ruifeng Lu from Nanjing University of Science and Technology is the corresponding author.

Using the theoretical model of multi-band semiconductor Bloch equation, the researchers found that the coherent enhancement of different quantum paths of electronic transitions resulted in different odd and even harmonics radiated by the strained target under the action of ultrafast and strong laser. This work provides a reference for the investigation of the electronic structure and dynamics of semiconductor in the strong laser field.

Since the scientists at Stanford University used ZnO crystal as the medium to obtain non-perturbed high-order harmonics in 2011 [1], the study on solid harmonics has attracted extensive interest of world-renowned research groups in related fields. Due to the high atomic density in the crystal materials, it is found that the harmonic signal intensity of SiO2 crystal is significantly higher than that of gas-phase medium under the same driving laser conditions [2]. Also, the solid harmonic signal can be used to reconstruct band structure [3] as well as Berry curvature [4] of crystal. In 2015, the high-order harmonics of GaSe crystal were measured in experiment and the coherence mechanism of quantum paths was proposed [5].

In recent years, Prof. Ruifeng Lu and coworkers have made great progress in the theoretical research of solid harmonics. In 2018, the details of the first solid harmonic experimental data are qualitatively reproduced for the first time, and the generation mechanism of odd and even harmonics derived from crystal spatial symmetry is clarified [6]. In 2019, it is further proved that the mechanisms of transition dipole moment, interband polarization and Berry curvature are essentially self-consistent, which are all the reflection of intrinsic symmetry [7].

At present, researchers try to obtain high-quality high-order harmonic signals by using light field regulation [8] or material regulation [9]. As one of the common methods in condensed matter physics, strain control has not been discussed seriously in previous solid harmonic studies. This work focuses on the material control. It is found that the band gap of monolayer AlN crystal becomes narrow under strain condition, thus the efficiency of the first harmonic plateau (with a cut-off of the 11th order in Figure 1) mainly from the (V1, C1) band pair is obviously enhanced with the odd harmonics still dominant. For the second harmonic plateau (with a cut-off of the 29th order in Figure 1), odd harmonics are dominant along both Γ-M and Γ-K direction without strain, whereas even harmonics are dominant along Γ-M direction when strain is applied. Through the detailed analysis of the transition dipole moment, it is confirmed that the peculiar even harmonics of the second plateau come from the enhanced interference of direct transition (V1-C1) and indirect transition (V1-V2-C1) of valence electron by applying strain. The scheme of controlling the harmonic radiation by changing the electronic structure is of great scientific significance and reference value to the study of high-order harmonic in solid.

###

This research was funded by the National Natural Science Foundation of China (No. 11974185) & Natural Science Foundation of Jiangsu Province (No. BK20170032).

See the article:

WANG Ziwen, JIANG Shicheng, YUAN Guanglu, WU Tong, LI Cheng, QIAN Chen, JIN Cheng, YU Chao, HUA Weijie & LU Ruifeng, Strain effect on the orientation-dependent harmonic spectrum of monolayer aluminum nitride, SCIENCE CHINA Physics, Mechanics & Astronomy, 2020, 5: 257311

https://doi.org/10.1007/s11433-019-1467-2

References:

[1] S. Ghimire, A. D. DiChiara, E. Sistrunk, P. Agostini, L. F. DiMauro, and D. A. Reis, Observation of high-order harmonic generation in a bulk crystal, Nat. Phys. 7, 138 (2011).

[2] T. T. Luu, M. Garg, S. Yu. Kruchinin, A. Moulet, M. T. Hassan, and E. Goulielmakis, Extreme ultraviolet high-harmonic spectroscopy of solids, Nature 521, 498 (2015).

[3] G. Vampa, T. J. Hammond, N. Thiré, B. E. Schmidt, F. Légaré, C. R. McDonald, T. Brabec, D. D. Klug, and P. B. Corkum, All-optical reconstruction of crystal band structure, Phys. Rev. Lett. 115, 193603 (2015).

[4] T. T. Luu, and H. J. Wörner, Measurement of the Berry curvature of solids using high-harmonic spectroscopy, Nat. Commun. 9, 916 (2018).

[5] M. Hohenleutner, F. Langer, O. Schubert, M. Knorr, U. Huttner, S. W. Koch, M. Kira, and R. Huber, Real-time observation of interfering crystal electrons in high-harmonic generation, Nature 523, 572 (2015).

[6] S. C. Jiang, J. G. Chen, H. Wei, C. Yu, R. F. Lu, and C. D. Lin, Role of transition dipole amplitude and phase on the generation of odd and even high-order harmonics in crystals, Phys. Rev. Lett. 120, 253201 (2018).

[7] S. C. Jiang, S. Gholam-Mirzaei, E. Crites, J. E. Beetar, M. Singh, R. F. Lu, M. Chini, and C. D. Lin, Crystal symmetry and polarization of high-order harmonics in ZnO, J. Phys. B: At. Mol. Opt. Phys. 52, 225601 (2019).

[8] N. Yoshikawa, T. Tamaya, and K. Tanaka, High-harmonic generation in graphene enhanced by elliptically polarized light excitation, Science 356, 736 (2017).

[9] H. Z. Liu, C. Guo, G. Vampa, J. Y. L. Zhang, T. Sarmiento, M. Xiao, P. H. Bucksbaum, J. Vučkovi?, S. H. Fan, and D. A. Reis, Enhanced high-harmonic generation from an all-dielectric metasurface, Nat. Phys. 14, 1006 (2018).

Media Contact
Lu Ruifeng
[email protected]

Related Journal Article

http://dx.doi.org/10.1007/s11433-019-1467-2

Tags: Chemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Mapping Tertiary Lymphoid Structures for Kidney Cancer Biomarkers

    50 shares
    Share 20 Tweet 13
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Private Sector Cuts Greenhouse Gases in Africa’s Livestock

Triple Targeting Enhances CXCL16–CXCR6 Antitumor Response

Intensive Short-Duration Exercise Outperforms Standard Care in Treating Panic Disorder

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 74 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.