• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, February 8, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Isotope movement holds key to the power of fusion reactions

Bioengineer by Bioengineer
February 26, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Katsumi Ida, the National Institute for Fusion Science and the Graduate University for Advanced Studies


Fusion may be the future of clean energy. The same way the sun forces reactions between light elements, such as hydrogen, to produce heavy elements and heat energy, fusion on Earth can generate electricity by harnessing the power of elemental reactions. The problem is controlling the uniformity of hydrogen isotope density ratio in the fusion plasma–the soup of elements that will fuse and produce energy.

A research team in Japan has reached a key understanding of this process that may aid the future development and use of fusion plasma.

They published their results on Jan. 14 in Physical Review Letters, a journal of the American Physical Society.

The researchers focused on a ratio of hydrogen isotopes, or weight-varied versions of hydrogen, in plasma produced in the Large Helical Device (LHD) at the National Institute for Fusion Science (NIFS). The plasma consisted of hydrogen and deuterium, which weighs twice as much as hydrogen. By understanding how this plasma mixes, the researchers can begin to predict how future plasma consisting of deuterium and tritium, which weighs three times as much as hydrogen, may behave. 

“In the core of fusion plasma , it is most desirable to have an even split between deuterium and tritium because it gives the highest fusion power,” said paper author Katsumi Ida, a professor with both the National Institute for Fusion Science and the Graduate University for Advanced Studies. “However, we can only control the isotope ratio at the edge of the plasma, not in the core. We set out to investigate if the isotope ratio is uniform throughout the mixture. If it’s not, can we make it uniform?”

Ida and his team found that the uniformity is determined by how the isotopes move. Referred to as a turbulent state, isotopes affected by ion temperature gradient (ITG) turbulence were far more uniform than isotopes undergoing trapped-electron mode (TEM) turbulence.

“The ITG-dominant state is far more favorable in fusion plasma,” Ida said. “We saw the formation of a non-mixing profile and its transition to a uniform isotope state in the plasma, associated with the increase of turbulence propagating along the ion temperature gradient.”

ITG turbulence involves a temperature gradient matched to the magnetic fields confining the fusion plasma. The isotopes move more if they are on the hotter end, allowing the isotopes to more evenly mix. According to Ida, this understanding could help researchers control plasma uniformity and increase the power of fusion plasma isotope mixtures.

The researchers plan to study uniformity in other ions, including in helium–an element produced by the fusion reaction between deuterium and tritium.

###

This work was supported, in part, by the National Institute for Fusion Science and Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research.

Other contributors include M. Nakata, K. Takana, M. Yoshinuma, Y. Fujiwara, R. Sakamoto, G. Motojima, S. Masuzaki and T. Kobayashi, all of whom are affiliated with the National Institute for Fusion Science, part of the National Institutes of Natural Sciences in Japan. Nakata, Yoshinuma, Sakamoto, Masuzaki and Kobayashi are also affiliated with the Graduate University for Advanced Studies. K. Yamasaki of the Research Institute for Applied Mechanics at Kyushu University also contributed.

Media Contact
Kentaro Yaji
[email protected]
81-572-582-344

Related Journal Article

http://dx.doi.org/10.1103/PhysRevLett.124.025002

Tags: Chemistry/Physics/Materials SciencesEnergy/Fuel (non-petroleum)Nuclear Physics
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13
  • Mapping Tertiary Lymphoid Structures for Kidney Cancer Biomarkers

    50 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating a Self-Care App for Chest Trauma Patients

Anesthesia Method’s Impact on Elderly Hip Fracture Recovery

Menopause Care: Insights from Workforce Review and Consultation

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.