• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Targeting turncoat immune cells to treat cancer

Bioengineer by Bioengineer
February 18, 2020
in Biology
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Ludwig Cancer Research


FEBRUARY 18, 2020, NEW YORK — A Ludwig Cancer Research study has identified a mechanism by which regulatory T cells, which suppress immune responses, adapt their metabolism to thrive in the harsh microenvironment of the tumor. This mechanism, the study finds, is exclusively engaged by regulatory T cells (Tregs) that reside in tumors and could be disrupted to selectively target such Tregs and boost the effects of cancer immunotherapy.

“It has long been known that the Tregs found in tumors protect cancer cells from immune attack, so countering Tregs would be an important strategy for cancer immunotherapy,” says Ping-Chih Ho, associate member of the Lausanne Branch of the Ludwig Institute for Cancer Research, who led the study. “But a major hurdle to such interventions is that the systemic suppression of Treg activity can cause severe autoimmune reactions. We have discovered a potential approach to overcoming that problem, one that selectively targets Tregs in tumors and could therefore prevent such adverse effects.”

Tregs play a critical role in healthy tissues, where they prevent autoimmune disease and aid wound-healing. But, when recruited into tumors, Tregs also thwart anti-cancer immune responses–and immunotherapy. The current study, published in Nature Immunology, identifies a protein that drives the metabolic adaptations of intratumoral Tregs. The researchers show in a mouse model of melanoma that targeting that protein with an antibody significantly boosts the efficacy of immunotherapy without causing autoimmune side effects.

The cores of tumors are often acidic and starved of oxygen and vital nutrients, which forces resident cells to adapt their metabolism to survive. Ho and graduate student Haiping Wang suspected those adaptations might also reveal vulnerabilities unique to intratumoral Tregs. To find those vulnerabilities, they analyzed a dataset of Treg gene expression in breast tumors and blood compiled a few years ago by the laboratory of Ludwig MSK Director Alexander Rudensky.

They found that those and other intratumoral Tregs expressed high levels of genes involved in lipid uptake and metabolism–particularly CD36, a receptor involved in lipid import. An analysis of Tregs from human melanoma patients conducted by Ludwig Memorial Sloan Kettering (MSK) researchers Taha Merghoub and Jedd Wolchok yielded similar results.

To explore the role of CD36 in intratumoral Tregs, the researchers generated mice that lacked the CD36 gene only in their Treg cells and engrafted them with melanoma. “We found that the tumor burden was reduced in CD36-deficient mice,” says Wang, “and the number and functionality of Tregs declined only within tumors, not in the other, healthy tissues of the mice.”

CD36 deficiency induced in intratumoral Tregs a form of cell suicide known as apoptosis that was driven by a decline in the health and number of mitochondria–the power generators of cells. Further study revealed that CD36 fuels the activity of PPARβ, a protein essential to the genesis and function of mitochondria.

Treating mice bearing melanoma tumors with an antibody to CD36 resulted in a decline of intratumoral Tregs that was not seen in genetically identical control mice. When this antibody was combined with an immunotherapy known as PD-1 blockade, which stimulates a T cell attack on cancer cells, tumor growth slowed significantly, prolonging the survival of the mice.
“By targeting CD36 with an antibody, we don’t just create trouble for intratumoral Tregs, we also create trouble for the tumor’s ability to maintain an immunosuppressive microenvironment and hamper immunotherapy,” says Ho.

Ho’s lab is now working to translate these findings into a potential cancer therapy while exploring how CD36-targeting might be combined with other interventions to more extensively disable Tregs selectively within tumors. They are also exploring which other types of solid tumors harbor Tregs that are dependent on CD36 for survival.

###

This study was supported by Ludwig Cancer Research, the Swiss Cancer Foundation, the Swiss Institute for Experimental Cancer Research, the European Research Council, the Cancer Research Institute, the Society for Immunotherapy of Cancer, the US National Institutes of Health, the Research Foundation–Flanders, the Swiss Cancer Research Foundation, Swim Across America, the Parker Institute for Cancer Immunotherapy and the Breast Cancer Research Foundation.

In addition to his Ludwig post, Ping-Chih Ho is an associate professor at the University of Lausanne.

About Ludwig Cancer Research

Ludwig Cancer Research is an international collaborative network of acclaimed scientists that has pioneered cancer research and landmark discovery for 48 years. Ludwig combines basic science with the ability to translate its discoveries and conduct clinical trials to accelerate the development of new cancer diagnostics and therapies. Since 1971, Ludwig has invested $2.7 billion in life-changing science through the not-for-profit Ludwig Institute for Cancer Research and the six U.S.-based Ludwig Centers. To learn more, visit http://www.ludwigcancerresearch.org.

For further information please contact Rachel Reinhardt, [email protected] or +1-212-450-1582.

Media Contact
Rachel Reinhardt
[email protected]
212-450-1582

Original Source

https://www.ludwigcancerresearch.org/news-releases/targeting-turncoat-immune-cells-to-treat-cancer/

Related Journal Article

http://dx.doi.org/10.1038/s41590-019-0589-5

Tags: Biologycancer
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Critically Endangered Shark Meat Frequently Sold Under False Labels in US, Study Finds

September 10, 2025
blank

Fermented Poncirus Extract Inhibits Fat Cell Formation

September 10, 2025

Life at the Edge: Exploring Survival Within Arctic Ice

September 10, 2025

Decoding Animal Decision-Making: NIH Funds Groundbreaking Research on Exploration vs. Exploitation

September 9, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    52 shares
    Share 21 Tweet 13
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Blood Transfusions Increase Bronchopulmonary Dysplasia Risk in Preemies

Modular Organocatalysis Creates BN Isosteres via Wolff Rearrangement

Critically Endangered Shark Meat Frequently Sold Under False Labels in US, Study Finds

  • Contact Us

Bioengineer.org Ā© Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org Ā© Copyright 2023 All Rights Reserved.