• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

University of Illinois researchers demonstrate new capability for cooling electronics

Bioengineer by Bioengineer
February 18, 2020
in Science News
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Air jet impingement cooling of electronic devices using additively manufactured nozzles

IMAGE

Credit: Bill King, Mechanical Science & Engineering, Grainger Engineering


For decades, researchers have considered the potential for cooling hot electronic devices by blowing on them with high-speed air jets. However, air jet cooling systems are not widely used today. Two of the biggest obstacles that prevent the use of these systems is their complexity and weight. Air jet systems must be made of metal to be able to handle the pressure associated with air jets whose speed can exceed 200 miles per hour. And the air handling system can be complex with many discrete components that manage the air flow and direct the air onto the hot spots where cooling is required.

Now, researchers at the University of Illinois at Urbana-Champaign have demonstrated a new type of air jet cooler that overcomes previous barriers to jet cooling systems. Using additive manufacturing, the researchers created an air jet cooling system in a single component that can direct high-speed air onto multiple electronics hot spots. The researchers manufactured the cooling system from strong polymer materials that can withstand the harsh conditions associated with high-speed air jets.

“The design freedom of additive manufacturing allows us to create cooling solutions that have sizes and shapes not previously possible,” said William King, Andersen Chair and Professor of Mechanical Science and Engineering. “This really opens up a new world of opportunities for thermal management.”

The research focused on heat removal from high-power electronic devices. “The acute thermal management problems of high-power electronic devices appear in a host of applications, especially in modern data centers as well as electric vehicles including aircraft, automotive, and off-road vehicles,” said Nenad Miljkovic, Associate Professor of Mechanical Science and Engineering at Illinois and co-author on the published research.

The applications of high-power electronic devices are growing rapidly–in electric cars, solar power systems, 5G communications, and high-power computing utilizing graphics processing units (GPU), to name a few. The electronic devices in these systems generate heat that must be removed in order for effective and reliable operation. In general, higher power results in higher performance. Unfortunately, higher power also makes it more difficult to remove the heat. New cooling technologies are required to support the growth of electric systems.

###

The paper, “Air Jet Impingement Cooling of Electronic Devices Using Additively Manufactured Nozzles,” was published in the journal IEEE Transactions on Components, Packaging, and Manufacturing Technology. Authors include Beomjin Kwon (now an assistant professor at Arizona State University, graduate students Thomas Foulkes and Tianyu Yang, and Professors Miljkovic and King.

Media Contact
Bill King
[email protected]

Original Source

https://mechanical.illinois.edu/news/mechse-researchers-demonstrate-new-capability-electronics-cooling-using-additive-manufacturing

Tags: Electrical Engineering/ElectronicsResearch/DevelopmentTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

AI-Enhanced Multimodal Care for Pancreatic Cancer

October 18, 2025

Family Dynamics and Behavioral Challenges in Autistic Kids

October 18, 2025

Curcumin’s Role in Prostate Cancer Therapy

October 18, 2025

Exploring DSM-5 Traits in Eating Disorder Treatment

October 18, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1259 shares
    Share 503 Tweet 314
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    271 shares
    Share 108 Tweet 68
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    112 shares
    Share 45 Tweet 28
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    102 shares
    Share 41 Tweet 26

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

AI-Enhanced Multimodal Care for Pancreatic Cancer

Family Dynamics and Behavioral Challenges in Autistic Kids

Curcumin’s Role in Prostate Cancer Therapy

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.