• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Light-sheet fluorescence imaging goes more parallelized

Bioengineer by Bioengineer
February 18, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Y.-X. Ren, J. Wu, Q. T. K. Lai, H. M. Lai, D. M. D. Siu, W. Wu, K. K. Y. Wong, and K. K. Tsia


An arsenal of advanced microscopy tools is now available to provide high-quality visualization of cells and organisms in 3D and has thus substantiated our understanding the complex biological systems and functions.

In a new paper published in Light: Science & Applications, a research team led by the University of Hong Kong (HKU) developed a new form of imaging modality, coined coded light-sheet array microscopy (CLAM) that allows full 3D parallelized fluorescence imaging without any scanning mechanism – a capability that is otherwise challenging in the existing techniques.

Established 3D biological microscopy techniques, notably confocal, multiphoton microscopy, and light-sheet fluorescence microscopy (LSFM), predominantly rely on laser-scanning for image capture. Yet, it comes at the expense of imaging speed because the entire volume has to be sequentially scanned point-by-point, line-by-line or plane-by-plane at a speed limited by the mechanical motions involving the imaging parts.

Even worse, many serial scanning approaches repeatedly excite out-of-focus fluorescence, and thus accelerate photobleaching and photodamage. They are thus not favorable for long-term, large-scale volumetric imaging critically required in applications as diverse as anatomical science, developmental biology and neuroscience.

3D parallelization in CLAM requires even gentler illumination to achieve a similar level of image sensitivity at the same volumetric frame rate. Hence, it further reduces the photobleaching rate and thus the risk of photodamage. This is a critical attribute for preserving the biological specimen viability in long term monitoring studies.

The heart of CLAM is the concept of ‘infinity mirror” (i.e., a pair of parallel mirrors), which is common in visual art and decoration, and has previously been adopted by the same team for enabling ultrafast optofluidic single-cell imaging. Here the team employed the ‘infinity mirror” together with simple beam shaping to transform a single laser beam into a high-density array of few tens of light-sheets for 3D parallelized fluorescence excitation.

“One distinct feature of CLAM is its ability to flexibly reconfigure the spatial density and temporal coherence of the light sheet array, simply by tuning the mirror geometry, such as mirror separation and tilt angle.” explained Dr. Yuxuan Ren, the postdoctoral researcher and the first author of the work.

“This capability has been challenging in the existing coherent wavefront shaping methods, yet could allow efficient parallelized 3D LSFM in scattered tissue imaging with minimal speckle artifact.” Ren added.

CLAM also adopts code division multiplexing (CDM) (e.g., orthogonal frequency division multiplexing demonstrated in this work), a technique widely used in telecommunication, to imprint the fluorescence signal from each image plane with a unique code. As a result, it allows parallelized 3D image capture with optical sectioning by using a 2D image sensor.

“CLAM has no fundamental limitation in scaling to higher volume rate as camera technology continually advances,” Dr. Kevin Tsia, Associate Professor in Department of Electrical and Electronic Engineering at HKU and the leading researcher of the team pointed out.

“Also, CLAM can be adapted to any existing LSFM systems with minimal hardware or software modification. Therefore, it is readily available for dissemination to the wider community of LSFM and related 3D imaging techniques.” added Tsia.

###

The team is planning to further upgrade the current CLAM system for applications involving long-term dynamical volumetric imaging of live cellular, tissue, and organism, as well as high-throughput volumetric visualization for 3D histopathological investigation of archival biological samples.

This research received funding from the Research Grants Council of the Hong Kong Special Administrative Region of China, Innovation and Technology Support Program, the University Development Funds of the University of Hong Kong, and Natural Science Foundation of China.

Media Contact
Yuxuan Ren
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41377-020-0245-8

Tags: Chemistry/Physics/Materials SciencesOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.