• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Capillary shrinkage triggers high-density porous structure

Bioengineer by Bioengineer
February 13, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ©Science China Press


Materials with both a high density and a large surface area are required in many applications, typically for energy storage under a limited space. However, they are hard to obtain by using conventional strategies. In the previous study, Quan-Hong Yang et al. reported that graphene oxide (GO) can be used to produce a porous carbon material with a high density of 1.58 g cm-3 from hydrogel by evaporation-induced drying. However, the shrinkage of hydrogels is not yet clearly illustrated and there is still no full understanding of how the capillary forces work.

Recently, the same group from Tianjin University, China explored the capillary shrinkage of graphene oxide hydrogels in Science China Materials (DOI: 10.1007/s40843-019-1227-7) based on the different surface tension of the trapped solvent.

They chose water and 1,4-dioxane which have a sole difference in surface tension to investigate the mechanism of such a network shrinkage in r-GO hydrogel, and found the surface tension of the evaporating solvent and the associated capillary force regulated by the interfacial interaction between the r-GO sheets and the solvent determined the capillary forces in the nanochannels. Solvents with higher surface tensions generate stronger capillary forces during evaporation, which can compact the r-GO framework into a dense yet porous material. More promisingly, by using solvents with different surface tensions, the microstructure of the resulting materials can be precisely manipulated and densified, realizing an excellent balance of the density and porosity in materials not limited to carbon materials. This work provides a reliable methodology of controlled shrinkage of flexible graphene network and has great potential for high volumetric performance in practical devices.

###

See the article: Changsheng Qi, Chong Luo, Ying Tao, Wei Lv, Chen Zhang, Yaqian Deng, Huan Li, Junwei Han, Guowei Ling and Quan-Hong Yang, “Capillary shrinkage of graphene oxide hydrogels”, Science China Materials. doi: 10.1007/s40843-019-1227-7

http://engine.scichina.com/publisher/scp/journal/SCMs/doi/10.1007/s40843-019-1227-7?slug=fulltext

Media Contact
Quan-Hong Yang
[email protected]

Related Journal Article

http://dx.doi.org/10.1007/s40843-019-1227-7

Tags: Chemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.