• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Dancing matter: New form of movement of cyclic macromolecules discovered

Bioengineer by Bioengineer
February 11, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Physicists show unique polymer behavior using computer simulations

IMAGE

Credit: © Maximilian Liebetreu


Polymers are long molecules made from periodically connected molecular building blocks called monomers. Some polymers occur naturally in the shape of closed rings – for example as plasmids, cyclic DNA strands in bacteria, or for sufficiently long protein chains. Imagine immersing such objects into a solvent constrained between two parallel plates. We talk about shearing the system when we pull these plates in anti-parallel directions.

Under shear, polymers feature different dynamic modes: “Tumbling” means their swaying and flipping, comparable to the motion of a coin that has been tossed into the air. “Tank-Treading” means the rotation of a polymer ring, comparable to a rolling coin or a bicycle chain. In addition to these modes, rings under shear experience stretching in flow direction, comparable to a stretched rubber band. Like said rubber band, the stretched polymer is under tension. Rotation-, stretching- and alignment behavior were assumed to be the only shear effects on ring polymers – until now.

New movement mode discovered

When simulating these ring polymers, the authors of the study discovered a completely new phase – the so-called “inflation phase”. Above a certain shear velocity, they observed a swelling not only in flow direction, but also in the orthogonal one: the stretched ring “opened”. Furthermore, the ring stabilized itself, tilted in space with respect to the imposed flow. The formerly typical flipping and tumbling were almost completely suppressed. Polymers of a different topological form, such as linear chains, stars and microgels, do not feature any such behavior. When the scientists increased the shear rate further, eventually tumbling set in again, and the polymer aligned with the flow as expected.

The effect becomes even more pronounced when looking at knotted ring polymers. This is best visualized by tying a knot onto a string and then connecting both ends. The knot can then no longer be untied without cutting the string open. Such a knot is pulled tight under shear. In the context of the inflation phase, the scientists found the tight knot serves as a kind of additional stabilization anchor and suppresses tank-treading as well as tumbling.

Polymers can self-stabilize

The team owes their discovery to a simulation method called Multi-Particle Collision Dynamics, which accounts for local vortices and streams. In the specific case of ring polymers under shear, solvent particles are reflected from the stretched ends and the body of the ring. This leads to the collision of two opposite streams of reflected solvent particles in flow direction near the polymer’s center-of-mass. The resulting stream escapes to the sides which causes the ring to open and therefore the observed swelling not only in flow- but also vorticity direction – that is the direction orthogonal to the flow, but parallel to the sheared plates. The resulting flow field relative to the imposed shear is also responsible for the polymer’s self-stabilization.

The observed effect shows the importance of considering hydrodynamic interactions and fluctuations for analyzing the behavior of ring-shaped polymers. The new findings are predicted to be employed in future studies on separation methods for rings of different sizes and polymers of different topological forms.

###

Publication in Communications Materials:

Maximilian Liebetreu and Christos N. Likos

Hydrodynamic Inflation of Ring Polymers under Shear

DOI: 10.1038/s43246-019-0006-5

Media Contact
Christos N. Likos
[email protected]
43-142-777-3230

Original Source

https://www.nature.com/articles/s43246-019-0006-5

Related Journal Article

http://dx.doi.org/10.1038/s43246-019-0006-5

Tags: Chemistry/Physics/Materials SciencesMolecular PhysicsPolymer Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

Harnessing Microwaves to Boost Energy Efficiency in Chemical Reactions

Harnessing Microwaves to Boost Energy Efficiency in Chemical Reactions

October 10, 2025
Wirth Named Fellow of the American Physical Society

Wirth Named Fellow of the American Physical Society

October 10, 2025

UTA Physicist Secures $1.3 Million Grant to Advance Neutrino Research

October 10, 2025

Energy Savings at Home Are Driven by Attitudes, Not Income

October 10, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1200 shares
    Share 479 Tweet 300
  • New Study Reveals the Science Behind Exercise and Weight Loss

    102 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    96 shares
    Share 38 Tweet 24
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    83 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Genetic Shifts Drive Aggressiveness in 5-FU-Resistant Cells

Revolutionary Single-Cell PCR Method for HBV Detection

Tooth Loss Linked to Mortality in Seniors: Study

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.