• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Putting a finger on plant stress response

Bioengineer by Bioengineer
February 5, 2020
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers from the University of Tsukuba show that a zinc finger domain in Arabidopsis protein SIZ1 is essential for transcriptional regulation of genes required for abiotic stress responses

IMAGE

Credit: University of Tsukuba


Tsukuba, Japan – Post-translational modification is the process whereby proteins are modified after their initial biosynthesis. Modification can take many forms, including enzymatic cleavage of the protein or the addition of sugars, lipids, or small chemical groups. Amongst other things, post-translational modification enhances protein stability, mediates interactions between proteins, and can be used to mark proteins for transport or degradation.

In a report published this month in Communications Biology, researchers from the University of Tsukuba have found that one such post-translational modification, called sumoylation, in Arabidopsis thaliana relies on a single zinc finger domain within SUMO E3 ligase SIZ1. Without this domain, the function of the SIZ1 protein is impaired, resulting in stunted plant growth and increased sensitivity to stressful conditions such as low temperature.

Sumoylation involves the attachment of small SUMO proteins to target proteins, affecting how they function, where they are situated within the cell, and when they are degraded. In plants, this post-translational modification is involved in the response to cold, salt, and drought stresses, as well as in innate immunity and the regulation of signalling pathways. In A. thaliana, the attachment of SUMO to target proteins is mediated by an E3 ligase called SIZ1, which, although very similar to homologous proteins in yeast and animals, contains a unique PHD zinc finger-like domain.

“The importance of SIZ1 for effective sumoylation in Arabidopsis is well known,” explains lead author of the study Professor Kenji Miurasiz. “However, the significance of the PHD finger in the function of SIZ1, and ultimately sumoylation, was less clear.”

To investigate the biological importance of the PHD finger, the researchers expressed intact SIZ1 or SIZ1 missing the PHD finger in an Arabidopsis siz1 mutant. While intact protein restored normal growth, plants expressing SIZ1 without the PHD finger continued to show the growth retardation, cold sensitivity, and drought tolerance that are characteristic of the siz1 mutant, confirming that the PHD finger is required for SIZ1 function.

The researchers also showed that PHD containing a point mutation no longer recognized tri-methylated histone, a protein involved in gene regulation, and a SIZ1 protein containing this mutation also failed to rescue the siz1 phenotype.

“Based on our findings, we predict that PHD is essential for recognition of tri-methylated histone,” says co-author Associate Professor Takuya Suzaki. “Because tri-methylated histone accumulates at high levels in the promotor region of a stress response-associated transcription factor in the siz1 mutant, it is likely that PHD is essential for transcriptional gene suppression by SIZ1/SUMO in response to abiotic stress in Arabidopsis.”

###

Media Contact
Naoko Yamashina
[email protected]
81-298-532-066

Related Journal Article

http://dx.doi.org/10.1038/s42003-019-0746-2

Tags: BiologyCell BiologyMolecular BiologyPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.