• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Study shows low-dose chemotherapy regimens could prevent tumor recurrence in some cancers

Bioengineer by Bioengineer
November 23, 2016
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Chan et al., 2016

Conventional, high-dose chemotherapy treatments can cause the fibroblast cells surrounding tumors to secrete proteins that promote the tumors' recurrence in more aggressive forms, researchers at Taipei Medical University and the National Institute of Cancer Research in Taiwan and University of California, San Francisco, have discovered. Frequent, low-dose chemotherapy regimens avoid this effect and may therefore be more effective at treating certain types of breast and pancreatic cancer, according to the murine study "Metronomic chemotherapy prevents therapy-induced stromal activation and induction of tumor-initiating cells," which will be published online November 23 in The Journal of Experimental Medicine.

Chemotherapy drugs are usually administered to cancer patients every few weeks at a high "maximum tolerated" dose. Though this approach kills the majority of tumor cells, it often spares a small number of tumor-initiating cells (TICs) that subsequently give rise to new tumors. Moreover, these recurring tumors are often more aggressive and able to metastasize to other tissues, in part because high doses of chemotherapy drugs also affect cells in the stromal tissue that surrounds tumors, including immune cells and blood vessel endothelial cells.

Kelvin Tsai at Taipei Medical University and Valerie Weaver at the University of California, San Francisco, decided to investigate the effect of chemotherapy on fibroblasts, a major component of the stroma in desmoplastic tumors such as breast cancer and pancreatic ductal adenocarcinoma.

The researchers found that, in response to the maximum tolerated doses of several commonly used chemotherapy drugs, breast cancer-associated fibroblasts secrete large amounts of cell signaling proteins called ELR+ chemokines. These proteins promoted tumor growth and metastasis in mice by converting neighboring cancer cells into TICs, stimulating the formation of blood vessels within the tumor and enhancing the recruitment of immune cells called macrophages.

Recent studies have suggested that treating patients with low doses of chemotherapy drugs at more frequent, even daily, intervals may be more effective than traditional chemotherapeutic approaches. Tsai and colleagues found that such "low-dose metronomic" regimens did not induce the production of ELR+ chemokines by cancer-associated fibroblasts. This, in turn, reduced the fibroblasts' ability to promote TIC formation, blood vessel growth, and macrophage recruitment.

Mice with breast cancer or pancreatic ductal adenocarcinoma therefore responded better to low-dose metronomic chemotherapy, surviving longer than mice treated with the maximum tolerated dose. "Our results lend support to the emerging paradigm that stroma-derived signals contribute to tumor pathology," Tsai says. "They also suggest that low-dose metronomic chemotherapy or targeting the chemokine signaling mediated by chemo-treated fibroblasts may improve the therapeutic outcome in desmoplastic cancers."

###

Chan et al. 2016. J. Exp. Med. https://doi.org/10.1084/jem.20151665

About The Journal of Experimental Medicine

The Journal of Experimental Medicine (JEM) features peer-reviewed research on immunology, cancer biology, stem cell biology, microbial pathogenesis, vascular biology, and neurobiology. All editorial decisions are made by research-active scientists in conjunction with in-house scientific editors. JEM provides free online access to many article types from the date of publication and to all archival content. Established in 1896, JEM is published by The Rockefeller University Press. For more information, visit jem.org.

Visit our Newsroom and sign up for a weekly preview of articles to be published. Embargoed media alerts are for journalists only.

Follow JEM on Twitter at @JExpMed and @RockUPress.

Media Contact

Ben Short
[email protected]
212-327-7053
@RockUPress

http://www.rupress.org/

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Ozone Exposure Linked to Kawasaki Disease in Children

Ozone Exposure Linked to Kawasaki Disease in Children

August 21, 2025
Fat-Trapping Microbeads Enable Drug-Free Weight Loss in Rats, Study Reveals

Fat-Trapping Microbeads Enable Drug-Free Weight Loss in Rats, Study Reveals

August 21, 2025

New Study Uncovers Key Genes That Suppress Blood Cancer Progression

August 21, 2025

Electron Flow Matching Advances Reaction Mechanism Prediction

August 21, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Ozone Exposure Linked to Kawasaki Disease in Children

Fat-Trapping Microbeads Enable Drug-Free Weight Loss in Rats, Study Reveals

New Study Uncovers Key Genes That Suppress Blood Cancer Progression

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.