• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Acousto-optic modulation of photonic bound state in the continuum

Bioengineer by Bioengineer
January 22, 2020
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: by Zejie Yu and Xiankai Sun


Harnessing bound states in the continuum (BICs) in photonic integrated circuits (PICs) allows for low-loss light guidance and routing with a low-refractive-index waveguide on a high-refractive-index substrate. PICs operating under the BIC principle do not require patterning micro- or nanostructures in the functional photonic material. Without the stringent requirement of high-quality etching, many single-crystal materials that exhibit excellent optical functionalities in bulk form can now be introduced to the integrated photonic platform.

Acousto-optics involves the study of phonon-photon interactions based on changes in the refractive index of a medium due to the presence of acoustic waves in that medium. Surface acoustic waves (SAWs) that propagate on surfaces of a thin-film piezoelectric material can be confined within a thickness less than the acoustic wavelength, producing phonons with a very high density in the region near the surface. The small acoustic modal area, which is comparable to the optical modal area, results in a large overlap between the two modes in photonic waveguides. Therefore, SAWs can be used to achieve strong acousto-optic interactions in nanophotonic devices.

Lithium niobate (LiNbO3) is an ideal platform for research on phonon-photon interactions because it has large piezoelectric coefficients and is optically transparent over a wide wavelength range. It can be used to generate SAWs efficiently and support photonic cavities with high quality factors. As PICs operating under the BIC mechanism allow for flexible selection of piezoelectric materials, LiNbO3 can be adopted to fabricate high-quality photonic microcavities on a chip without the need for etching.

In a new paper published in Light: Science & Applications, researchers from The Chinese University of Hong Kong demonstrated a high-quality photonic microcavity based on the BIC mechanism, which was integrated with an SAW interdigital transducer monolithically on a thin-film LiNbO3-on-insulator platform. The cavity was constructed simply by patterning low-refractive-index waveguides on the high-refractive-index LiNbO3 substrate without facing the challenge of high-quality etching of LiNbO3.

The devices were fabricated on a 400-nm LiNbO3-on-insulator wafer with a standard top-down nanofabrication approach. The optical resonances of the fabricated racetrack microcavity were measured, with the highest intrinsic optical quality factor reaching ~500,000. Acousto-optic modulation of the cavity resonant BIC modes was demonstrated for the first time, with the modulation frequency exceeding 4 GHz. The combination of the high frequency of the SAW and the sub-GHz linewidth of the cavity resonance enables acousto-optic coupling in the resolved-sideband regime, yielding coherent coupling between microwave and optical photons, as evidenced by the observed electro-acousto-optically induced transparency and absorption.

The unique feature and main advantage of the present scheme are that by harnessing the low-loss light guidance under the BIC mechanism, the single-crystal LiNbO3 layer is free from etching, thus producing SAWs of uniform acoustic wavelengths and low acoustic propagation loss, which facilitates highly efficient phonon?photon coupling. The obtained strong phonon?photon coupling can be harnessed to develop a wide range of Brillouin-scattering-based photonic applications, including delay lines, light storage, microwave signal processing, Brillouin lasers and amplifiers, and nonreciprocal light transmission. Additionally, the travelling acoustic waves here were electrically excited, being much stronger than those excited by optical methods. By using a piezoelectric material, it is not necessary to fabricate delicate suspended structures similar to those in conventional on-chip stimulated-Brillouin-scattering-based devices. Therefore, our demonstrated devices have great promise in achieving high performance in Brillouin-effect-based applications with a more robust architecture.

###

Media Contact
Xiankai Sun
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41377-019-0231-1

Tags: Chemistry/Physics/Materials SciencesOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

AI Uncovers ‘Self-Optimizing’ Mechanism in Magnesium-Based Thermoelectric Materials

August 22, 2025
Astronomers Discover the Brightest Fast Radio Burst Ever Recorded

Astronomers Discover the Brightest Fast Radio Burst Ever Recorded

August 21, 2025

Atomically Thin Material Wrinkles Pave the Way for Ultra-Efficient Electronics

August 21, 2025

Exploring Dark Matter Through Exoplanet Research

August 21, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Global Study Finds Heart Disease Disproportionately Affects Racialized and Indigenous Communities, Exacerbated by Data Gaps

New Study Reveals How Lymphoma Reconfigures the Human Genome

Revolutionizing Prosthetic Legs: Innovations Through Data-Driven Design

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.