• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

TSRI scientists develop vaccine against fatal prescription opioid overdose

Bioengineer by Bioengineer
November 23, 2016
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: The Scripps Research Institute

LA JOLLA, CA – November 23, 2016 – Scientists at The Scripps Research Institute (TSRI) have developed a vaccine that blocks the pain-numbing effects of the opioid drugs oxycodone (oxy) and hydrocodone (hydro) in animal models. The vaccine also appears to decrease the risk of fatal opioid overdose, a growing cause of death in the United States.

"We saw both blunting of the drug's effects and, remarkably, prevention of drug lethality," said Kim D. Janda, the Ely R. Callaway Jr. Professor of Chemistry and member of the Skaggs Institute for Chemical Biology at TSRI. "The protection against overdose death was unforeseen but clearly of enormous potential clinical benefit."

The study was published this week online ahead of print in the journal ACS Chemical Biology.

How It Works

The new oxy/hydro vaccine takes advantage of the immune system's ability to recognize, seek out and neutralize invaders.

Opioids were designed to reach receptors in the brain, causing pain reduction and feelings of euphoria. For their vaccine, the researchers combined a signature opioid structure with a molecule to trigger an immune response. When injected, the vaccine teaches the immune system to bind to the drug molecule and remove it from circulation.

The vaccine-derived antibodies were tailored by TSRI scientists to seek out the prescription drug and block the opioid from reaching the brain, potentially depriving a person of the "reward" of consuming the drug, Janda explained.

The scientists believe a vaccine approach could have an advantage over current opioid addiction therapies because it would not alter brain chemistry like many of today's anti-addiction therapies do.

"The vaccine approach stops the drug before it even gets to the brain," said study co-author Cody J. Wenthur, a research associate in the Janda laboratory. "It's like a preemptive strike."

Lab Tests Show Promise

The researchers found that their vaccine design blocked pain perception of oxy/hydro use in mice. Indeed, those given the vaccine did not display the usual symptoms of a drug high, such as ignoring pain and discomfort.

In further tests, the rodents also appeared less susceptible to fatal overdose. Although it was found that some vaccinated mice did succumb to the opioid drug's toxic effects, the researchers noted that it took much longer for the drug to impart its toxicity. If this effect holds true in humans, the vaccine could extend the window of time for clinical assistance if overdose occurs.

The scientists also discovered that the vaccine remained effective in mice for the entire 60-day study period, and they believe it has the potential to last even longer.

This oxy/hydro vaccine is not the first ever tested, but it is the first to use a faithful representation of the opioid in its design, which prompts the remarkable efficacy seen with the TSRI vaccine. "Our goal was to create a vaccine that mirrored the drug's natural structure. Clearly this tactic provided a broadly useful opioid deterrent," said study first author Atsushi Kimishima, a research associate in the Janda laboratory.

The study did raise some new questions. For example, researchers found that once antibodies bound to the drug, the drug stayed in the body–though neutralized–for a long time. The next steps will be to investigate this phenomenon and further study the optimal vaccine dose and injection schedule. The scientists also stated it may be possible to make the vaccine even more effective.

###

The additional author of the study, "An Advance in Prescription Opioid Vaccines: Overdose Mortality Reduction and Extraordinary Alteration of Drug Half-Life," was Bin Zhou of TSRI.

This study was supported by the National Institute on Drug Abuse of the National Institutes of Health (grant 1UH2DA041146-02).

About The Scripps Research Institute

The Scripps Research Institute (TSRI) is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. TSRI is internationally recognized for its contributions to science and health, including its role in laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. An institution that evolved from the Scripps Metabolic Clinic founded by philanthropist Ellen Browning Scripps in 1924, the institute now employs more than 2,500 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists–including two Nobel laureates and 20 members of the National Academy of Science, Engineering or Medicine–work toward their next discoveries. The institute's graduate program, which awards PhD degrees in biology and chemistry, ranks among the top ten of its kind in the nation. For more information, see http://www.scripps.edu.

Media Contact

Madeline McCurry-Schmidt
[email protected]
858-784-9254
@scrippsresearch

http://www.scripps.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Kaempferia parviflora’s Flavones Boost Melanogenesis by Blocking TPC2

November 18, 2025

Feeding Strategies for Children with Autism Explored

November 18, 2025

Forecasting the U.S. General Internal Medicine Workforce through 2037

November 18, 2025

Epitranscriptomic ac4C Drives Plant Growth, Stress Response

November 18, 2025
Please login to join discussion

POPULAR NEWS

  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    211 shares
    Share 84 Tweet 53
  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    201 shares
    Share 80 Tweet 50
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    118 shares
    Share 47 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    90 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Kaempferia parviflora’s Flavones Boost Melanogenesis by Blocking TPC2

Feeding Strategies for Children with Autism Explored

Forecasting the U.S. General Internal Medicine Workforce through 2037

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.